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We calculate the dynamical spin-spin correlation functions of a Kondo dot coupled to two noninteracting
leads held at different chemical potentials. To this end we generalize a recently developed real-time renormal-
ization group �RG� method in frequency space �H. Schoeller, Eur. Phys. J. Spec. Top. 168, 179 �2009�� to
allow the calculation of dynamical correlation functions of arbitrary dot operators in systems describing spin
and/or orbital fluctuations. The resulting two-loop RG equations are analytically solved in the weak-coupling
regime. This implies that the method can be applied provided either the voltage V through the dot or the
external magnetic field h0 are sufficiently large, max�V ,h0��TK, where the Kondo temperature TK is the scale
where the system enters the strong-coupling regime. Explicitly, we calculate the longitudinal and transverse
spin-spin correlation and response functions as well as the resulting fluctuation-dissipation ratios. The corre-
lation functions in real-frequency space can be calculated in Matsubara space without the need of any analyti-
cal continuation. We obtain analytic results for the line shape, the small- and large-frequency limits, and several

other features like the height and width of the peak in the transverse susceptibility at �� h̃, where h̃ denotes
the renormalized magnetic field. Furthermore, we discuss how the developed method can be generalized to
calculate dynamical correlation functions of other operators involving reservoir degrees of freedom as well.
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I. INTRODUCTION

The single-impurity Kondo model2 is unquestionably one
of the most important models studied in condensed-matter
physics over the past decades. The investigation of its equi-
librium properties has caused the development of important
theoretical tools such as renormalization group �RG� meth-
ods or the Bethe ansatz for impurity systems.3–6 More than
20 years ago it was also realized7–9 that the Kondo model
can be used to describe transport experiments through quan-
tum dots. The developments in the ability to engineer devices
on the nanoscale has led to the experimental realization of
Kondo physics in such systems.10–16 One particular advan-
tage of these quantum dots is the almost full control over
system parameters such as temperature, bias and gate volt-
ages, magnetic field, and exchange couplings. These possi-
bilities have triggered a great interest in the theoretical study
of quantum dots out of equilibrium. A wide range of theoret-
ical methods has been applied in the past, including nonequi-
librium perturbation theory,17–26 the flow-equation meth-
od,27–30 Coulomb gas representations,31,32 real-time and func-
tional renormalization group methods,1,33–38 a nonequilib-
rium extension of the numerical renormalization group
�NRG� method,39,40 and time-dependent density matrix
renormalization group �DMRG� techniques.41–45 These stud-
ies established the importance of relaxation and decoherence
effects for the understanding of nonequilibrium physics.
From an experimental point of view various measurable
quantities like the steady-state current, the magnetization,
and the static susceptibility have been calculated.

Beside the application of these techniques there were also
attempts to employ the known integrability of certain impu-
rity models in equilibrium, notably the Anderson impurity
model and the interacting resonant level model, to investi-
gate their nonequilibrium properties. Konik et al.46,47 calcu-

lated the differential conductance in the Anderson impurity
model by combining the well-known scattering states of the
equilibrium system5 with a Landauer-Büttiker formalism. In
this work the chemical potentials in the leads were coupled
to dressed excitations rather than free electrons and the cal-
culation was restricted to a subset of the excitations. In con-
trast, a different approach was recently put forward by Metha
and Andrei48 to treat the interacting resonant level model.
They constructed a new set of scattering states of Bethe-
ansatz form which share the quantum numbers of free elec-
trons in the incoming channel, hence allowing the applica-
tion of a finite voltage in the usual manner. However,
questions concerning the existence of these scattering states
and issues related to the used regularization scheme of the
theory remain open. Nevertheless, the interacting resonant
level model has become one of the benchmark systems in the
study of nonequilibrium physics.42,49–56

Despite the large number of studies of impurity models
out of equilibrium only few results are known for the dy-
namical correlation functions. The spin dynamics of a non-
equilibrium quantum dot has been studied by using a Majo-
rana fermion representation,20,21 which yields the qualitative
low-frequency properties of the correlation functions. The
transverse susceptibility in a Kondo model was studied by
Paaske et al.23 using nonequilibrium perturbation theory to-
gether with a pseudofermion representation of the Kondo
spin. They showed that the Fourier transform of the trans-
verse susceptibility possesses a peak if its frequency equals
the value of the applied magnetic field, ��h0, and that the
width of this peak is given by the transverse spin relaxation

rate �̃2. Their derivation was, however, restricted to either

the regime h0� �̃2 or max���−h0� , �̃2��max�h0 ,V�, where
V denotes the applied voltage. Very recently, Fritsch and
Kehrein29,30 applied the flow-equation method to study the
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longitudinal correlation function as well as the magnetization
and T matrix in a Kondo model in and out of equilibrium.
The numerical solution of the two-loop scaling equations
allowed them to study the correlation function for all com-
binations of the parameters voltage, temperature, and mag-
netic field, provided the weak-coupling condition �i.e., the
presence of a large enough infrared cutoff� was satisfied. In
particular, these numerical solutions were used to compare
the effects of an applied voltage and a finite temperature,
revealing qualitative differences such as the appearance of
Kondo splitting in the nonequilibrium situation. In general,
however, this method cannot provide analytic expressions for
the line shape.

In this paper we will generalize the real-time renormaliza-
tion group method in frequency space1 to allow the calcula-
tion of dynamical correlation functions of arbitrary dot op-
erators in systems describing spin and/or orbital fluctuations.
In this setting the quantum dot is coupled to noninteracting
leads which are held at different chemical potentials. The
derived two-loop RG equations can be solved analytically in
the weak-coupling regime. Explicitly, we calculate the lon-
gitudinal and transverse spin-spin correlation and response
functions in a two-lead Kondo model in a magnetic field h0
up to order Jc

2. Here Jc denotes the effective coupling at the
energy scale �c=max�V ,h0� where the flow of the coupling
constant is cutoff. In order to satisfy the weak-coupling con-
dition Jc�1 either the applied voltage or the magnetic field
have to be sufficiently large compared to the Kondo tempera-
ture, �c�TK, where TK is the scale where the system enters
the strong-coupling regime. We note that the applied formal-
ism does not rely on a fermionic representation of the Kondo
spin but rather deals with its matrix representation in Liou-
ville space directly. The longitudinal response function pos-

sesses a peak at the spin relaxation rate �̃1, which gets sup-
pressed in a finite magnetic field. Interestingly, in the case of

a strong magnetic field, V� h̃ where h̃= �1−Jc+ ¯ �h0 de-
notes the renormalized magnetic field �see Eq. �174� for the
precise value�, the longitudinal correlation and response
function show “kinklike” structures at the frequencies �

= h̃ , h̃�V, which were also observed using the flow-equation
method.30 Here we additionally provide the line shape close
to these “kinks” and show that the real part of the response
functions shows characteristic logarithmic features at �

= h̃ , h̃�V. Furthermore we study the longitudinal and trans-
verse fluctuation-dissipation ratios. As expected these ratios
show a revival of the fluctuation-dissipation theorem57,58 pro-
vided the applied voltage is small compared to the magnetic
field or the considered oscillation frequency.

This paper is organized as follows. In the next two sec-
tions we will define the general set up we want to study and
define the used notations. This will include the Kondo
model, the notion of Liouville operators as well as the defi-
nition of the symmetrized correlation function and suscepti-
bility. In Sec. IV we will then derive perturbative expansions
for the kernels needed to calculate these correlation func-
tions. This will be performed in Liouville space; the expan-
sion is done in powers of the exchange coupling between the
dot and the reservoirs. These perturbative expansions can be
applied to any model describing spin and/or orbital fluctua-

tions as well as correlation functions of arbitrary operators.
In Sec. V we will use these results to derive the RG equa-
tions for the kernels of pure dot operators. In the following
section we will further specialize to the two-lead Kondo
model, where we use the explicit expressions of the Liouville
operator and the coupling between the dot and the reservoirs
to derive analytic results for the effective kernels appearing
in the correlation functions. Finally, these expressions for the
kernels are used in Secs. VII and VIII to calculate the longi-
tudinal and transverse correlation and response functions.

II. KONDO MODEL

The real-time renormalization group in frequency space
was applied in Ref. 38 to calculate various quantities includ-
ing the spin relaxation and dephasing rates, the renormalized
magnetic field, the magnetization, and the current in the an-
isotropic Kondo model in a finite magnetic field out of equi-
librium. In this reference all notations which we will use in
the following were originally set up. In order to increase the
readability of the present paper we will briefly recall the
basic formulas and notations.

We consider a quantum dot with fixed charge in the
Coulomb-blockade regime coupled to external reservoirs. As
shown in detail in Ref. 37, a standard Schrieffer-Wolff trans-
formation leads to a Hamiltonian of the form

H = Hres + HS + V = H0 + V , �1�

where Hres is the reservoir part, HS characterizes the isolated
quantum dot, and V describes the coupling between reser-
voirs and quantum dot. They are given explicitly by

Hres = 	
�
��. . .

� d	�	 + 
�� a+��	�a−��	� , �2�

HS = 	
s

Es�s�s� , �3�

V =
1

2 	
���

	
���
� d	� d	�g��,�����	,	��

� :a���	�a�����	��: . �4�

Here, a�� are the fermionic creation ��=+� and annihilation
��=−� operators in the reservoirs and � is an index charac-
terizing all quantum numbers of the reservoir states, which
contains the reservoir index �
L ,R
� and the spin quan-
tum number �
 ↑ , ↓ 
�. We measure the energy 	 of the
reservoir states relative to the chemical potential 
� of res-
ervoir �. The eigenstates and eigenenergies of the isolated
quantum dot are denoted by �s� and Es. The interaction V is
quadratic in the reservoir field operators, which arises from
second order processes of one electron hopping on and off
the quantum dot coherently. This keeps the charge fixed and
allows only spin/orbital fluctuations. The coupling vertex
g��,�����	 ,	�� is an arbitrary operator acting on the dot
states. It is written in its most general form, depending on the
quantum numbers and energies of the reservoir states in an
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arbitrary way. As explained in Ref. 1, the RG approach can
be set up in its most convenient form if one assumes that the
frequency dependence of the initial vertices is rather weak
and varies on the scale of the band width D of the reservoirs.
For the model we have in mind, the isotropic spin-1

2 Kondo
model in a magnetic field, this is certainly satisfied. There-
fore, we will assume this in the following and introduce be-
low �see Eq. �12�� a convenient cutoff function into the free
reservoir Green’s functions.

To achieve a more compact notation for all indices, we
write 1
��	 and sum �integrate� implicitly over all indices
�frequencies�. The interaction is then written in the compact
form

V =
1

2
g11�:a1a1�: . �5�

:¯: denotes normal ordering of the reservoir field operators,
meaning that no contraction is allowed between reservoir
field operators within the normal ordering. Within the normal
ordering of Eq. �5�, the field operators can be arranged in an
arbitrary way �up to a fermionic sign�; therefore the coupling
vertex can always be chosen such that antisymmetry holds,

g11� = − g1�1. �6�

Furthermore, due to the hermiticity of V, the vertex has the
property

g11�
† = g1̄�1̄ , �7�

where 1̄
−� ,� ,	.
The specific model we want to study is the isotropic

Kondo model in an external magnetic field h00 �see Fig.
1�. In this case the above relations read explicitly

HS = h0Sz, �8�

g11� =
1

2��J����0Si����
i

for � = − �� = +

− �J����0Si����
i

for � = − �� = − ,
� �9�

where i� �x ,y ,z�, Si is the i component of the spin-1
2 opera-

tor of the quantum dot, �i is a Pauli matrix, and �J����0 are

the initial exchange couplings. We will be interested in the
antiferromagnetic model here, i.e., we assume �J����00 ini-
tially. If one derives the Kondo model via a Schrieffer-Wolff
transformation from an Anderson impurity model �see, e.g.,
Ref. 37�, one further finds

�J����0 = 2�x�x��J0, 	
�

x� = 1. �10�

Although the general formalism and many of the following
formulas are also valid for an arbitrary number of reservoirs,
we will consider the case of two reservoirs only with chemi-
cal potentials given by


L =
V

2
, 
R = −

V

2
, �11�

where V is the applied voltage which we assume to be posi-
tive, V0.

A contraction is defined with respect to a grand-canonical
distribution of the reservoirs, given by

a1a1� � �a1a1���res
= �11̄�����f����� . �12�

f��	�= �e	/T�+1�−1=1− f��−	� is the Fermi distribution
function corresponding to temperature T� �note that the
chemical potential does not enter this formula since
	 is measured relative to 
��. Furthermore, �11�

����������	−	�� is the � function in compact notation.
Furthermore, we have introduced the cutoff by the band
width D into the reservoir contraction via the density of
states

��	� =
D2

D2 + 	2 . �13�

In order to calculate the dynamical spin-spin correlation
functions we have to know the time evolution of the density
matrix ��t�. Formally, this follows from the solution of the
von Neumann equation

��t� = e−iH�t−t0���t0�eiH�t−t0� = e−iL�t−t0���t0� , �14�

where

L = �H, . �− �15�

is the Liouvillian acting on usual operators in Hilbert space
via the commutator. Form �1� of the Hamiltonian yields a
similar decomposition of the Liouvillian,

L = Lres + LS
�0� + LV, �16�

with Lres= �Hres , . �−, LS
�0�= �HS , . �−, and LV= �HV , . �−. We

would like to note that the concept of Liouville space and
superoperators have been used in various contexts, for ex-
ample, in quantum statistical mechanics.59,60

Initially, we assume that the density matrix is a product of
an arbitrary dot part �S�t0� and a grandcanonical distribution
�res for the reservoirs,

��t0� = �S�t0��res. �17�

Furthermore, we introduce the Laplace transform

LL JRR

J

µL
µR

1/2S=

J

RL

FIG. 1. Isotropic spin-1
2 Kondo model coupled via exchange to

two reservoirs. JLL and JRR involve exchange between the electron
spins of the left/right reservoir and the local spin, JRL=JLR transfers
an electron from one reservoir to the other during the exchange
process. We assume that the Kondo model was derived from an
Anderson impurity model via a Schrieffer-Wolff transformation,
which implies the relation JLLJRR=JRL

2 .
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�̃�z� = �
t0

�

dt eiz�t−t0���t� =
i

z − L
��t0� , �18�

where we will frequently use the notation z=E+ i	. The sta-
tionary density matrix is defined as

�st = lim
t→�
��t� = lim

t0→−�
��t� , �19�

which is understood in the sense Tr�O�st�
=limt→� Tr�O��t�� for any local operator O and can be cal-
culated using

�st = − i lim
z→i0+

z�̃�z� = lim
z→i0+

z

z − L
��t0� . �20�

The existence of a stationary state was proven in Ref. 25
using nonequilibrium pertubation theory to all orders as well
as in Ref. 1 using the real-time renormalization group
method in frequency space �RTRG-FS�, which in particular
clarified the generation of the relaxation and dephasing rates
under the RG flow. The reduced density matrix of the dot is
obtained by tracing out the reservoir degrees of freedom

�̃S�z� = Trres �̃�z� =
i

z − LS
ef f�z�

�S�t0� , �21�

where LS
ef f�z� denotes the effective Liouvillian of the quan-

tum dot formally defined in Eq. �57� below. The stationary
reduced density matrix can then be obtained similar to Eq.
�20�,

�S
st = lim

t→�
�S�t� = lim

z→i0+

z

z − LS
ef f�z�

�S�t0� . �22�

III. CORRELATION FUNCTIONS

The quantities of interest in this paper are the two-point
correlation function of two operators A and B=A† as well as
their dynamical susceptibility with respect to the steady state,

SAB�t� =
1

2
�A�t�H − A�st,B�0�H − B�st�+�st, �23�

�AB�t� = i��t��A�t�H,B�0�H�−�st, �24�

where

O�st = lim
t0→−�

Tr„OeiLt0��t0�… = lim
t0→−�

Tr„O��0�… . �25�

Here the trace is taken over the dot states as well as the
reservoir degrees of freedom, Tr=TrSTrres. The time evolu-
tion of the operators in the Heisenberg picture is given by

A�t�H = eiHtAe−iHt = eiLtA . �26�

Instead of calculating Eqs. �23� and �24� in real time we will
study their respective Fourier transforms

SAB��� = �
−�

�

dt ei�tSAB�t� , �27�

�AB��� = �
−�

�

dt ei�t�AB�t� , �28�

where �=�� i� for t0 �t�0�. The susceptibility admits
the standard decomposition �AB���=�AB� ���+ i�AB� ���.

In order to calculate SAB��� and �AB��� we introduce the
auxiliary correlation functions

CAB
� ��� = �

−�

0

dt e−i�t�A�0�H,B�t�H���st, �29�

with �=�+ i�. Its relations to the correlation functions are
given by �see Appendix A�

SAB��� = Re CAB
+ ��� − 2�A�stB�st���� , �30�

�AB��� = iCAB
− ��� . �31�

The static susceptibility is related to the dynamical suscepti-
bility via

�AB =
�M

�h0
= − lim

�→0
�AB� ��� , �32�

where M = Sz�st denotes the magnetization.
Some general properties of the correlation functions can

be obtained by considering their spectral representations. Let
��n�� be a complete set of basis states of the full Hamiltonian
H, i.e., H�n�=En�n�. Furthermore, the stationary density ma-
trix �st satisfies �H ,�st�−=0, thus the basis states �n� can be
chosen such that

n��st�m� = �n
st�nm. �33�

Using this one easily verifies the spectral representations

CAB
� ��� = 	

mn

��n
st� �m

st�n�A�m�m�B�n�

� ����� + En − Em� + i
P

� + En − Em
� . �34�

These relations imply SAA†����0 as well as SBA���
=SAB�−��, �BA� ���=�AB� �−��, and �BA� ���=−�AB� �−��. In
equilibrium the matrix elements of the density matrix are
given by �n=e−En/T /Z with the partition sum Z, which im-
plies the well-known fluctuation-dissipation theorem57,58

�AA†� ��� = tanh
�

2T
SAA†��� �35�

as well as ��AA†� ����0.

IV. PERTURBATIVE EXPANSION FOR THE
CORRELATION FUNCTIONS

In this section we derive a perturbative expansion in Liou-
ville space for the auxiliary correlation functions CAB

� ���,
which will serve as the starting point for the derivation of the
RG equations below. A similar perturbative expansion for the
effective Liouvillian of the quantum dot LS

ef f has been de-
rived in Refs. 1 and 38. We will generalize these results to
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CAB
� ��� while closely following the presentation of Ref. 38.

As starting point to set up the formalism we assume that
the operators A and B admit a representation similar to Eq.
�5�,

A =
1

m!
a1¯m:a1 ¯ am:, B =

1

n!
b1¯n:a1 ¯ an: , �36�

where we recall the short-hand notation 1
��	 and sum
�integrate� implicitly over all indices �frequencies�. We fur-
ther assume the operators A and B to be bosonic which im-
plies m and n to be even. Eventually we will be concerned
with the correlation functions of the spin operators on the
dot, i.e., A ,B=S+ ,S− ,Sz. In this case the operators do not
couple dot and reservoir degrees of freedom and hence only
the terms with m=n=0 are nonvanishing. However, we will
keep the general forms �36� throughout this section, which,
for example, include the case of current operators,1,38 where
m=n=2.

In order to set up the perturbative expansions in Liouville
space we define the operators

LA =
i

2
�A, . �+, LB

� = i�B, . ��. �37�

Then using Eq. �26� together with Eq. �14� we obtain after
some algebra

CAB
� ��� = �− i�2 lim

t0→−�
�

−�

0

dt e−i�t Tr„LAeiLtLB
�e−iL�t−t0���t0�… .

�38�

In the next step we use Eqs. �19� and �20� and furthermore
perform the Laplace transform t→� in Eq. �38� to obtain

CAB
� ��� = − i lim

�→i0+
Tr�LA

1

� − L
LB
� �

� − L
��t0�� . �39�

Here we have used �=�+ i� to ensure convergence of the
integral. The limit �→ i0+ has to be taken before �→0+ in
order to reach the stationary state.

The next step is to expand expression �39� in the interact-
ing part LV of the Liouvillian and to integrate out the reser-
voir part. This procedure was outlined for the reduced den-
sity matrix �̃S�z� in detail in Ref. 1; we will generalize this to
the case of the auxiliary correlation functions �39� here. First,
using L=L0+LV with L0=Lres+LS

�0�, Eq. �39� can be formally
expanded in LV,

CAB
� ��� = − i lim

�→i0+
	

k,l=0

�

Tr�LA
1

� − L0
�LV

1

� − L0
�k

�LB
� �

� − L0
�LV

1

� − L0
�l

��t0�� . �40�

Second, in order to integrate out the reservoir degrees of
freedom we write LV in the form

LV =
1

2
p�G11�

pp�:J1
pJ1�

p�: , �41�

where we implicitly sum �integrate� over 1=��	 as well as
p , p�=�. J1

p is a quantum field superoperator in Liouville
space for the reservoirs, defined by �C is an arbitrary reser-
voir operator�

J1
pC = �a1C for p = +

Ca1 for p = − .
� �42�

Here p=� serves as an auxiliary index which is similar to
the Keldysh index indicating whether the field operator is
acting on the upper or the lower part of the Keldysh contour.

G11�
pp� is a superoperator acting in Liouville space of the quan-

tum dot and is defined by �C is an arbitrary operator on the
quantum dot�

G11�
pp�C = �pp��g11�C for p = +

− Cg11� for p = − .
� �43�

In the same way we define

LA =
1

m!
�p1¯pmA1¯m

p1¯pm:J1
p1
¯ Jm

pm: , �44�

LB
� =

1

n!
�p1¯pn�B��1¯n

p1¯pn:J1
p1
¯ Jn

pn: , �45�

where the dot superoperators A1¯m
p1¯pm and �B��1¯n

p1. . .pn act on
arbitrary dot operators C as

A1¯m
p1¯pmC =

i

2
�p1p2

¯ �p1pm�a1¯mC , p1 = +

Ca1¯m, p1 = − ,
� �46�

�B��1¯n
p1¯pnC = i�p1p2

¯ �p1pn�b1¯nC , p1 = +

�Cb1¯n, p1 = − .
� �47�

For m=0 or n=0 we define AC= i�a ,C�+ /2 and B�C
= i�b ,C��, respectively. As we consider only bosonic opera-
tors A and B which change the number of fermions by an
even integer, the sign superoperator is given by

�p1¯pn = p2p4 ¯ pn. �48�

This operator was introduced to compensate additional signs
due to interchanges of fermionic reservoir field operators as
explained in detail in Ref. 1.

Inserting representations �41� as well as �44� and �45� into
Eq. �40� and shifting all reservoir field superoperators J1

p to
the right using

J1
pLres = �Lres − x1�J1

p, �49�

where we have introduced the short-hand notation xi=�i�	i
+
�i

�, one can show1 that each term of perturbation theory
can be written as a product of a dot part and an average over
a sequence of field superoperators of the reservoirs with re-
spect to �res. Evaluating the latter with the help of Wick’s
theorem, one can represent each term of the Wick decompo-
sition by a diagram �see Fig. 2, for an example� describing a
certain process contributing to the auxiliary correlation func-

DYNAMICAL SPIN-SPIN CORRELATION FUNCTIONS IN… PHYSICAL REVIEW B 80, 075120 �2009�

075120-5



tion CAB
� ���. Each process consists of a sequence of interac-

tion vertices G11�
pp� between the dot and the reservoirs, and a

free time propagation of the dot in between �leading to re-
solvents in Laplace space�. Since the reservoirs have been
integrated out, the vertices are connected by reservoir con-

tractions �the green lines in Fig. 2�. This means that the
various diagrams represent terms for the effective time evo-
lution of the dot in the presence of dissipative reservoirs.
Each diagram for the auxiliary correlation function has the
form

CAB
� ��� → −

i

S
�− 1�Np�� �� lim

�→i0+
�A 1

� + X1 − LS
�0�G

1

� + X2 − LS
�0�G ¯ B�¯ G

1

� + Xr − LS
�0�G

1

� − LS
�0��S�t0� , �50�

where LS
�0�= �HS , . �−, G
Gij

pipj indicates an interaction ver-
tex, and �
�ij

pipj is a contraction between the reservoir field
superoperators, defined by

�11�
pp� = J1

pJ1�
p� = p� Trres J1

pJ1�
p��res = �11̄�����p�f���p��� .

�51�

We stress that only the initial reduced density matrix of the
dot �S�t0� defined in Eq. �17� appears in Eq. �50� as we have
already performed the trace over the reservoir degrees of
freedom �and hence �res� to obtain the reservoir contractions
�. To factorize the Wick decomposition, a fermionic sign has
to be assigned to each permutation of reservoir field super-
operators, indicated by the sign factor �−1�Np in Eq. �50�. For
each pair of vertices connected by two reservoir lines, a com-
binatorial factor 1

2 occurs, leading to the prefactor 1 /S in Eq.
�50�. The value of the frequencies Xi in the resolvents be-
tween the interaction vertices is determined by the sum over
all variables x=��	+
�� of those indices belonging to the
reservoir lines which are crossed by a vertical line at the
position of the resolvent �the blue lines in Fig. 2�. Thereby,
the index of the left vertex has to be taken of the correspond-
ing reservoir line. For example, the diagram shown in Fig. 2
is given by �the obvious dependence on the Keldysh indices

has been omitted for simplicity, i.e., �ij 
�ij
pipj and Gij


Gij
pipj�

− i lim
�→i0+

�„�16�23�45A12�12���G34�14���G56…

�
1

� − LS
�0��1

2
�7,10�89B�,78�78���G9,10� 1

� − LS
�0��S�t0� ,

�52�

where the resolvents are defined by

�1¯n�z� =
1

z1¯n + 	̄1¯n − LS
�0� , �53�

with

z1¯n = z + 	
i=1

n


̄i, �54�

as well as

	̄1¯n = 	
i=1

n

	̄i, 
̄i = �i
�i
, 	̄i = �i	i. �55�

As can be seen from the example �52�, each diagram consists
of a sequence of irreducible blocks �where a vertical line
always cuts at least one reservoir line� and free resolvents
1 / ��−LS

�0�� or 1 / ��−LS
�0�� in between. Now there are two

possibilities: �i� The vertices A and B do not belong to the
same block �see Fig. 3, for an example�. �ii� The vertices A
and B belong to the same block �see Fig. 4, for an example�.
In the first case �i� one can formally resum those terms be-
tween the vertices A and B which are not connected to them
similar to Dyson equations with the result

1098765431 2
A12 B±,78

FIG. 2. �Color online� Example of a diagram contributing to the
auxiliary correlation function CAB

� ���. The time direction is to the
left. Each vertex G is represented by two adjacent black dots indi-
cating the two reservoir field operators associated with each vertex.
The vertices A and B are represented in the same way by red dots.
For this example we have chosen m=n=2 in Eq. �36� as it would be
the case for a current-current correlation function. The black hori-
zontal lines connecting the vertices denote the free time propagation
of the quantum system, leading to the resolvents 1 / �E+Xi−LS

�0�� in
Laplace space. The green lines are the reservoir contractions arising
from the application of Wick’s theorem. The vertical blue lines
between the vertices are auxiliary lines to determine the energy
argument Xi of the resolvents.

12111098765431 2
A12 B±,78

FIG. 3. �Color online� Example of a diagram contributing to Eq.
�61�.
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1

� − LS
ef f���

, �56�

where

LS
ef f��� = LS

�0� + ���� . �57�

Here the kernel ���� contains the sum over all irreducible
diagrams,

���� →
1

S
�−1�Np�� ��irr

�G
1

� + X1 −LS
�0�G ¯ G

1

� + Xr −LS
�0�G , �58�

where the subindex irr indicates that only irreducible dia-
grams are allowed where any vertical line between the ver-
tices cuts through at least one reservoir contraction. We fur-
ther introduce irreducible blocks �A��� as well as �B

��� ,��
which are given as the sum over all irreducible diagrams
containing the vertices A and B�,

�A��� →
1

S
�−1�Np�� ��irr

�A 1

�+ X1 −LS
�0�G ¯ G

1

� + Xr −LS
�0�G , �59�

�B
���,�� →

1

S
�− 1�Np�� ��irr

�G
1

� + X1 − LS
�0�G ¯ G

1

� + Xr − LS
�0�

�B�
1

� + Xr+1 − LS
�0�G ¯ G

1

� + Xs − LS
�0�G .

�60�

Obviously, in the case of spin operators, A ,B� �S+ ,S− ,Sz�,
the vertex A has no external legs and hence �A���=A. In
contrast, although the vertex B� does not possess external
legs either, there exist irreducible diagrams containing B�
and at least one vertex G to the left and one to the right of
B�. If we now proceed by resumming the irreducible blocks
right to �and not connected to� the vertex B� similar to Eq.
�56� and perform the limit �→ i0+ using Eq. �22�, we deduce
that all terms of type �i� contribute to

− i TrS��A���
1

� − LS
ef f���

�B
���,i0+��S

st� . �61�

In the second case �ii� we introduce a kernel similar to
Eqs. �59� and �60� which contains all irreducible diagrams
containing both vertices A and B,

�AB
� ��,�� →

1

S
�− 1�Np�� ��irr

�A 1

� + X1 − LS
�0�G ¯ G

1

� + Xr − LS
�0�

�B�
1

� + Xr+1 − LS
�0�G ¯ G

1

� + Xs − LS
�0�G .

�62�

In the case of spin operators, A ,B� �S+ ,S− ,Sz�, there exist
no irreducible diagrams connecting A and B�, hence
�AB
� �� ,��=0 in this case. Now using again �22� for the sum

of the irreducible blocks right to �and not connected to� the
vertex B� we deduce that all terms of type �ii� contribute to

− i TrS��AB
� ��,i0+��S

st� . �63�

Hence, taking together �i� and �ii� we finally arrive at the
main result of this section,

CAB
� ��� = − i TrS��A���

1

� − LS
ef f���

�B
���,i0+��S

st�
− i TrS��AB

� ��,i0+��S
st� , �64�

where the kernels are defined by Eqs. �58�–�60� and �62�,
respectively.

In addition we note that the diagrammatic series can be
partially resummed by taking all closed subdiagrams be-
tween two fixed vertices together which contain only con-
tractions connecting vertices between the two fixed ones.
This has the effect that the resolvents in Eqs. �58�–�60� and
�62� are replaced by

1

� + Xi − LS
�0� →

1

� + Xi − LS
ef f�� + Xi�

�65�

�and similar for �→��, i.e., the full effective Liouville op-
erator occurs in the denominator. In this formulation the
number of diagrams is reduced, i.e., diagrams containing
closed subdiagrams between two vertices are no longer al-
lowed.

V. GENERIC RG EQUATIONS

In this section we will set up the generic RG equations for
the kernels �A���, �B

��� ,��, and �AB
� �� ,�� for spin opera-

tors on the dot in a model with spin/orbital fluctuations.
Hence we will assume form �41� for the coupling between
the reservoirs and the quantum dot but will keep the vertex

G11�
pp� arbitrary at this stage. The derivation will require some

relations between the initial Liouvillian LS
�0�, the vertex B�,

and the effective dot Liouvillian LS
ef f which can be explicitly

checked for the Kondo model to be studied in the next sec-
tion but have to be assumed here. These relations are Eqs.
�112�, �132�, �133�, and �B4�. The generic RG equations for

12111098765431 2
A12 B±,78

FIG. 4. �Color online� Example of a diagram contributing to Eq.
�63�.

DYNAMICAL SPIN-SPIN CORRELATION FUNCTIONS IN… PHYSICAL REVIEW B 80, 075120 �2009�

075120-7



the vertex G and the effective Liouvillian LS
ef f have been

derived and solved in Ref. 38, we will quote these results
without derivation when they are needed.

Furthermore, we will restrict ourselves to the calculation
of the dynamical spin-spin correlations only, i.e., we will
assume A ,B� �S+ ,S− ,Sz� in what follows. This implies, in
particular, that the initial values of the vertices A and B�
defined in Eqs. �44� and �45� do not possess any external
lines, i.e., m=n=0. Explicitly,

A =
i

2
�A, . �+, �66�

B� = i�B, . ��. �67�

We will see below that this form of the vertex A is conserved
under the RG flow. In contrast, a new effective B-type vertex
B�,11� with two external lines will be generated. The fact that
the initial vertex A has no external lines directly implies the
final results for kernels �59� and �62�, namely,

�A��� = A , �68�

�AB
� ��,�� = 0. �69�

Hence, in the following we have to consider kernel �60� only.
We note that the results of this section remain valid for any
pure dot operators A and B, i.e., any operators �36� with m
=n=0.

The RG procedure is divided into two steps. In the first
step we will integrate out the symmetric part of the reservoir

contractions �11�
pp�. The reason for this is as follows: The ef-

fective dot Liouvillian LS
ef f�z� can be diagonalized as

LS
ef f�z� = 	

i

�i�z�Pi�z� , �70�

where �i�z� and Pi�z� denote the eigenvalues and correspond-
ing projectors, respectively. This diagonalization implies for
the resolvents

1

z − LS
ef f�z�

= 	
i

1

z − �i�z�
Pi�z� . �71�

Now there exists a zero eigenvalue �0�z�=0 whose eigen-
state for z→ i0+ corresponds to the stationary state. The ap-
pearance of this zero eigenvalue can lead to infrared diver-
gencies of the frequency integrations in the perturbative
expansions for the vertex G and the effective Liouvillian LS

ef f

as is elaborated on in detail in Ref. 1. However, after the
discrete RG step we can trivially sum over the Keldysh in-
dices p and p� by introducing

Ḡ11� = 	
p

G11�
pp , G̃11� = 	

p

pG11�
pp . �72�

In the resulting RG equations only the symmetric vertex Ḡ
will appear. This vertex has the important property

P0�z�Ḡ11� = 0, �73�

which is independent of the model specifics. Hence, after the
discrete RG step the zero eigenvalue can no longer appear in

any resolvent standing left to Ḡ �i.e., in no resolvent except
the one standing left to the vertex B��. This resolves the
problem of infrared divergent internal frequency integra-
tions, as the remaining eigenvalues �i�z� have a strictly nega-
tive imaginary part �see Eqs. �167� and �168��. We would
like to refer to Ref. 1 for a general discussion of this topic.

In the second step we introduce a cutoff � into the reser-
voir contractions via the Fermi function. We then integrate
out the reservoirs by sending �→0, which results in a de-
scription of the system in terms of effective dot quantities
like LS

ef f. This second continuous RG step is further divided
into two substeps; first we integrate out the reservoir degrees
of freedom down to an energy scale �c, and second we com-
plete the flow from �c down to �=0.

A. Discrete RG step

In the first discrete RG step we integrate out the symmet-
ric part 1

2 �f��	�+ f��−	��= 1
2 of the Fermi function in con-

traction �51�. The discrete RG step for kernel �58� and the
vertex G has been performed in Ref. 38. Here we will derive
the analog results for kernel �60� and the vertex B�,11�. This
is achieved by decomposing contraction �51� according to

�11�
pp� = �11̄�p��1

s + �11̄��1
a, �74�

�1
s =

1

2
��	̄�, �1

a = ��	̄�� f��	̄� −
1

2
� , �75�

with 	̄
�	. Using this decomposition in Eq. �60�, one finds
that each diagram decomposes into a series of blocks which
are irreducible with respect to the symmetric part �s �i.e., any
vertical line hits at least one symmetric contraction� and con-
nected to each other by antisymmetric contractions �a. The
blocks which are irreducible with respect to �s can be for-
mally resummed into an effective kernel �B

�,a�� ,�� and a
newly generated effective vertex B�,11�

a �� ,��. The lowest
order diagrams are shown in Fig. 5. Using the diagrammatic
rules together with Eq. �74� and convention �54�, we obtain
for the first two diagrams

1’1 1’ 1

a
s

21 2 1’

s

1’1 1’ 1

s
s

B± B±B±

FIG. 5. �Color online� The lowest order diagrams for the kernel
�B
�,a�� ,�� �left and middle diagram� and the effective vertex

B�,11�
a �� ,�� �right diagram� when the symmetric part of the con-

traction is integrated out. s �a� denotes the symmetric �antisymmet-
ric� contraction �s ��a�.
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�1
s�1

2
�1�

s + p��1�
a �G11�

pp 1

�11� + 	̄11� − LS
�0�

�B�
1

�11� + 	̄11� − LS
�0�G1̄�1̄

p�p�, �76�

and for the third one �including the interchange 1↔1��

p��2
sG12

pp 1

�12 + 	̄12 − LS
�0�B�

1

�12 + 	̄12 − LS
�0�G2̄1�

p�p� − �1 ↔ 1�� .

�77�

We use here the original perturbation series �60� so that the
unperturbed Liouvillian LS

�0� occurs in the resolvents. Per-
forming the frequency integrations and assuming the band-
width to be large, we obtain

�B
�,a��,�� = B� −

�2

32
Ḡ11�B�Ḡ1̄�1̄ + i

�

4
Ḡ11�B�G̃1̄�1̄

+ O�G3,
1

D
� , �78�

B�,11�
a ��,�� = O�G3,

1

D
� , �79�

where we have performed the sum over the Keldysh indices
and used Eq. �72�. We stress at this point that the kernel �B

�

and the renormalized vertex B��� ,�� without external lines
are identical,

�B
���,�� = B���,�� . �80�

Nevertheless we will retain the distinction between the ker-
nel and the vertex in the following, as the former appears in
the final formulas for the correlation functions �64�, whereas
the latter appears in the diagrammatic expressions for the
right–hand side of the RG equations. We note that the fre-
quency dependence in Eq. �80� is generated during the flow
as shown below.

After integrating out the symmetric part of the Fermi
function in this way, we obtain a new diagrammatic series
for the kernel analog to Eq. �60�. The Liouvillian and the
vertices have to be replaced by the effective ones and the
contractions between the effective vertices contain only the
antisymmetric part �a. Due to Eq. �79� there occur no dia-
grams including the new vertex B�,11�

a �� ,��. Furthermore,
since the effective quantities have become energy dependent

�also the effective vertex Ḡa becomes energy dependent in
higher order perturbation theory�, one has to replace

1

z + Xi − LS
�0�G →

1

z + Xi − LS
a�z + Xi�

Ḡa�z + Xi� �81�

�with z=� ,�� in Eq. �60�. Since the antisymmetric part of
contraction �74� does not depend on the Keldysh indices,

only the effective vertex Ḡa averaged over the Keldysh indi-
ces occurs in the new perturbative series.

B. Continuous RG equations

In the second continuous RG procedure we deal with the
remaining antisymmetric part of the Fermi distribution func-
tion, where in each infinitesimal step a small energy shell is
integrated out. Instead of integrating out the energies on the
real axis, it has turned out to be more efficient to integrate
out the Matsubara poles of the Fermi distribution function on
the imaginary axis.1,36 This is achieved by introducing a for-
mal cutoff dependence into the antisymmetric part of the
Fermi distribution by

f�
��	� = − T�	

n

1

	 − i	n
��T�

�� − �	n
��� , �82�

where 	n
�= �2n+1��T� are the Matsubara frequencies corre-

sponding to the temperature of reservoir �, and

�T�	� = ���	� for �	��T

1

2
+
	

2�T
for �	���T � �83�

is a theta function smeared by temperature. For �=�, Eq.
�82� yields the full antisymmetric part f��	�− 1

2 of the Fermi
distribution. In each RG step, one reduces the cutoff � by
d� and integrates out the infinitesimal part f�

�− f�
�−d�

=d��df�
� /d�� of the Fermi distribution. For example, the

new effective Liouvillian at scale �−d�

LS
�−d��z� = LS

��z� − dLS
��z� �84�

and similarly the new effective vertices Ḡ11�
�−d��z� and

B�,11�
�−d��� ,�� as well as the kernel �B

�,�−d��� ,�� can be cal-
culated technically in the same way as for the first discrete
RG step. The only difference is that an infinitesimal small
part is integrated out so that the RG diagrams contain only
one contraction involving d��df�

� /d��. Furthermore, since
the diagrams have to be irreducible with respect to this part,
this contraction must connect the first with the last vertex of
the diagram. Using this procedure the RG equations for the

dot Liouvillian LS
��z� and the vertex Ḡ11�

� �z� have been de-
rived in Ref. 38. Here we will use this technique to obtain
the RG equations for B�,11�

� �� ,�� as well as �B
�,��� ,��.

The diagrams contributing to the RG equations for
B�,11��� ,��
B�,11�

� �� ,�� and �B
��� ,��
�B

�,��� ,�� are
shown in Figs. 6 and 7, respectively. Using the definition

21 2 1’B±

FIG. 6. �Color online� RG diagram for the renormalization of
the vertex B�,11�

� �� ,z� in O�G2�. The slash indicates the contraction
where the Fermi function has to be replaced by −d��df�

� /d��.
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�1
� = ��	̄�f�

��	̄� , �85�

together with the convention

�1¯n�z� =
1

z1¯n + 	̄1¯n − LS�z1¯n + 	̄1¯n�
, �86�

we obtain the following RG equations:

d

d�
B�,11���,��

= − �d�2
�

d�
Ḡ12����12���B���12 + 	̄12,�12 + 	̄12�

��12���Ḡ2̄1���12 + 	̄12� − �1 ↔ 1��� , �87�

and

d

d�
�B
���,�� = −

d�1
�

d�
�2
�Ḡ12����12���B���12 + 	̄12,�12 + 	̄12��12���Ḡ2̄1̄��12 + 	̄12�

−
d�1
�

d�
�2
��B�,12��,���12���Ḡ2̄1̄��12 + 	̄12� + Ḡ12����12���B�,2̄1̄��12 + 	̄12,���

−
d�1
�

d�
�2
��3
�Ḡ12����12����B���12 + 	̄12,�12 + 	̄12��12���Ḡ2̄3��12 + 	̄12�

+ Ḡ2̄3��12 + 	̄12��13���B���13 + 	̄13,�13 + 	̄13���13���Ḡ3̄1̄��13 + 	̄13� . �88�

We recall here that the kernel �B
� and the vertex without

external lines B� equal each other, see Eq. �80�, which yields
a closed set of RG equations. We will further show in Ap-
pendix B that the two-loop diagrams for B�,11� as well as the
one-loop diagrams containing B�,11� itself do not contribute
at second order in the coupling constant and hence can be
neglected on the right-hand side of Eq. �87�.

The initial conditions of the RG equations are given by
Eqs. �78� and �79�. Since �1

�=0=0, the solution at �=0 pro-
vides the result for the kernel

�B
���,�� = �B

����,����=0, �89�

from which the correlation functions can be calculated via
Eq. �64�.

As the resolvents and the vertices on the right-hand side
of the RG equations are analytic functions in all frequencies
	̄i in the upper half of the complex plane, all frequency
integrations can be calculated analytically. The only poles
contributing are the ones of the contractions and their deriva-
tives given by Eq. �85� with Eq. �82� as well as

d�1
�

d�
= − ��	̄�

1

2�� 1

	̄ − i�T�

+
1

	 + i�T�
� . �90�

Here �T�
denotes the Matsubara frequency 	n

� which lies
closest to the cutoff �. After performing the integration we
find1 that, due to the presence of the cutoff function ��	̄�
=D2 / �D2+ 	̄2�, the right-hand side of the RG equations gives
a negligible contribution for ��D. Therefore, we can start
the RG at �0�D and omit the cutoff function ��	̄� �the
precise ratio between �0 and D is determined such that no
linear terms in D in the effective Liouvillian are

generated1,38�. As a consequence, only the Matsubara poles
of the Fermi function in the upper half plane contribute and
all real frequencies are simply replaced by Matsubara fre-
quencies. From now on, we write the frequency dependence
explicitly and define the analytic continuation of the Liouvil-
lian and the vertices in imaginary frequency space by

Ḡ11��E,	;	1,	1�� = Ḡ11���E + i	��	̄i→i	i
, �91�

LS�E,	� = LS�E + i	� , �92�

B�,11���,�,�,��;	1,	1�� = B�,11���� + i�,� + i����	̄i→i	i
,

�93�

�B
���,�,�,��� = �B

��� + i�,� + i��� , �94�

where we keep the real and imaginary parts of the Laplace
variable z=E+ i	 and the external frequencies �
�+ i�
and �
�+ i�� separated from now on. Furthermore, 	
	n

�,
	i
	ni

�i correspond to Matsubara frequencies and the com-
pact indices 1 and 2 on the left-hand side do no longer con-
tain the frequencies 	i. With the definition

��E,	� =
1

E + i	 − LS�E,	�
, �95�

the RG equations �87� and �88� in Matsubara space can be
written as
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d

d�
B�,11���,�,�,��;	1,	1�� = iḠ12��,�;	1,�T�2

����12,� + 	1 + �T�2
�B���12,� + 	1 + �T�2

,�12,�� + 	1 + �T�2
�

����12,�� + 	1 + �T�2
�Ḡ2̄1���12,�� + 	1 + �T�2

;− �T�2
,	1�� − �1 ↔ 1�� , �96�

and

d

d�
�B
���,�,�,��� = Ḡ12��,�;�T�1

,	2����12,� + �T�1
+ 	2�B���12,� + �T�1

+ 	2,�12,�� + �T�1
+ 	2�

����12,�� + �T�1
+ 	2�Ḡ2̄1̄��12,�� + �T�1

+ 	2;− 	2,− �T�1
�

+ B�,12��,�,�,��;�T�1
,	2����12,�� + �T�1

+ 	2�Ḡ2̄1̄��12,�� + �T�1
+ 	2;− 	2,− �T�1

�

+ Ḡ12��,�;�T�1
,	2����12,� + �T�1

+ 	2�B�,2̄1̄��12,� + �T�1
+ 	2,�,��;− 	2,− �T�1

�

− iḠ12��,�;�T�1
,	2����12,� + �T�1

+ 	2�

��B���12,� + �T�1
+ 	2,�12,�� + �T�1

+ 	2����12,�� + �T�1
+ 	2�Ḡ2̄3��12,�� + �T�1

+ 	2;− 	2,	3�

+ Ḡ2̄3��12,� + �T�1
+ 	2;− 	2,	3����13,� + �T�1

+ 	3�B���13,� + �T�1
+ 	3,�13,�� + �T�1

+ 	3��

����13,�� + �T�1
+ 	3�Ḡ3̄1̄��13,�� + �T�1

+ 	3;− 	3,− �T�1
� . �97�

In these equations we implicitly sum over all indices and
Matsubara frequencies on the right-hand side of the RG
equations which do not occur on the left-hand side. Only
positive Matsubara frequencies smaller than the cutoff � are
allowed and each sum has to be written as

2�T�	
n

�T�
�� − 	n

����	n
�� , �98�

which reduces to an integral �0
�d	 for zero temperature.

In Secs. V C and V D we will solve the RG equations �96�
and �97� analytically in the weak-coupling regime up to
O�G2�. Weak coupling is defined by the condition that the

renormalized vertices Ḡ12�E ,	 ,	1 ,	2� stay small compared
to one throughout the RG flow so that the expansion in pow-
ers of G on the right-hand side of the RG equations is well
defined. This condition is fulfilled if the various cutoff scales
occurring in the resolvents are much larger than the Kondo
temperature TK at which the vertices would diverge in the
absence of any cutoff scales.

C. Weak-coupling analysis above �c

As is discussed in detail in Refs. 1 and 38 there exists a
characteristic energy scale

�c = max��E�, �
��, h̃� , �99�

where h̃�h0 is the renormalized magnetic field. For �

�c the cutoff scales �E�
���, �
�� and h̃ can be neglected

in the RG equation for the vertex Ḡ �see below�. This leads

to a reference solution Ḡ�1� which serves as the starting point
for a systematic expansion in powers of the coupling con-

stant J�, where Ḡ12
�1��J� �see Eq. �43� together with Eq. �9��.

This yields a perturbative solution of the RG equations in the
regime ��c. These results serve as initial values for the
flow in the second regime 0����c. Here the renormaliza-

tion of the vertex Ḡ12 is at least of order Jc
2, where Jc


J�=�c. Provided the weak-coupling condition Jc�1 is sat-
isfied all quantities can be calculated perturbatively. This fact
crucially relies on the appearance of some relaxation/
dephasing rate in resolvents �71�, which is guaranteed by Eq.

�73� �as then in all resolvents standing left to a vertex Ḡ the
zero eigenvalue of the Liouvillian cannot contribute�. This
analysis has been performed for the Liouvillian and the cur-
rent kernel in the anisotropic Kondo model in Ref. 38. We
note that the zero eigenvalue may appear in the resolvent left
to the vertex B� in Eq. �60�. We will show below that this
does not lead to any problems in the calculation of the spin-
spin correlation functions in the Kondo model up to order Jc

2.

1 1 12 21 2 21 12 2

1 2 2 3 3 1 1 2 2 3 3 1B±

B±

B±

B±,12 B±,2̄1̄

FIG. 7. �Color online� RG diagrams for the renormalization of
the kernel �B

�,��� ,z� up to O�G3�.
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Regarding the appearance of the external frequency ��� as
one of the cutoff parameters in Eq. �99� we see from the
perturbative expansion �60� that � does not appear in the
resolvents and as a cutoff parameter for all vertices right to
B�. This fact, however, will only affect the results in the

regime ��V , h̃. We will therefore use Eq. �99� as unique
cutoff for all vertices appearing in the derivation of the ker-
nel �B

�. In Sec. VI we will show that for the spin operator in
the Kondo model the difference yields a correction �1 /�
and can thus be neglected. Nevertheless we stress that all
vertices appearing in the stationary reduced density matrix
�S

st in Eq. �22� do not possess � as cutoff parameter. We thus
deduce that in order to stay in the perturbative regime we
cannot rely on the external frequency � but have to require

max�V , h̃��TK.
We finally note that temperature serves as a unique cutoff

for all terms on the right-hand side of the RG equations as
for ��2�T� the Matsubara sums are reduced to one term
and the cutoff �T�

=�T� becomes independent of �. This
trivial cutoff is set to zero in the following, i.e., we will set
T�=0.

After these preliminary remarks let us turn to the evalua-
tion of the RG equations. The one-loop RG equation for the

vertex Ḡ is at zero temperature given by1,38

d

d�
Ḡ11��E,	;	1,	1��

= iḠ12�E,	;	1,����E12,	 + � + 	2�

�Ḡ2̄1��E,	;− �,	1�� − �1 ↔ 1�� . �100�

The RG equation for the reference solution Ḡ11�
�1� is obtained

by assuming � to be much larger than any other term ap-
pearing in the resolvent, which gives

d

d�
Ḡ11�

�1� =
1

�
�Ḡ12

�1�Ḡ
2̄1�

�1�
− Ḡ1�2

�1� Ḡ
2̄1

�1�� . �101�

The initial condition for Ḡ11�
�1� at �=�0�D is the bare vertex

Ḡ11� defined in Eq. �43�. The leading order solution is pro-

portional to the coupling constant Ḡ�1��J���. We stress that
the term on the right-hand side, which is �J2 /�, contributes
to the change of the vertex at order J. This is a general
feature of the RG above �c. In order to calculate the change
of a quantity at order Jn one has to analyze those terms

�Jn /�, where ��� ,
� , h̃ is some energy scale, and
�Jn+1 /� on the right-hand side of the corresponding RG
equation. In contrast, terms �Jn+1�� /��k /��k�1� do not
contribute to the change at order Jn. The RG equation for the

vertex G̃11�
�1� is given by Eq. �101� with the replacement1

Ḡ
2̄1�

�1�
, Ḡ

2̄1

�1�→ G̃
2̄1�

�1�
, G̃

2̄1

�1�
.

Using this leading order solution we can formally expand
all quantities in powers of J, i.e.,

Ḡ11��E,	;	1,	1�� = Ḡ11�
�1� + Ḡ11�

�2� �E,	;	1,	1�� + ¯ ,

�102�

LS�E,	� = LS
�0� + LS

�1��E,	� + LS
�2��E,	� + ¯ , �103�

B�,11���,�,�,��;	1,	2� = B�,11�
�2� ��,�,�,��;	1,	2� + ¯ ,

�104�

�B
���,�,�,��� = �B

�,�0� + �B
�,�1� + �B

�,�2���,�,�,��� + ¯ .

�105�

Here LS
�0�= �HS , . �− is the bare dot Liouvillian. We recall Eq.

�80�, which implies �B
�,�n��� ,� ,� ,���=B��n��� ,� ,� ,��� in all

orders in J. Furthermore, we have already indicated which
terms will depend on the Matsubara frequencies, external
frequencies �+ i� and �+ i�� and the Laplace variable E
+ i	.

The vertex Ḡ and the Liouvillian were calculated in Ref.
38. We will here state those results needed for the calculation

of Eqs. �104� and �105�. The second order vertex Ḡ�2� is
further decomposed as

Ḡ11�
�2� �E,	;	1,	1�� = iḠ11�

�2a1� + Ḡ11�
�2a2� + Ḡ11�

�2b��E,	;	1,	1�� .

�106�

Here the vertex Ḡ�2a1� is given by38

Ḡ11�
�2a1� = −

�

2
�Ḡ12

�1�G̃
2̄1�

�1�
− Ḡ1�2

�1� G̃
2̄1

�1�� . �107�

For the Kondo model the vertex Ḡ�2a2� turns out to have the

same matrix structure as the leading order solution Ḡ�1�. This

implies that both can be put together by redefining Ḡ�1�


 Ḡ�1�+ Ḡ�2a2�, which amounts to a two-loop renormalization

of the Kondo temperature.4,25,38 Furthermore, the vertex Ḡ�2b�

is generically given by

Ḡ11�
�2b��E,	;	1,	1�� = Ḡ12

�1� ln
� + 	 + 	1 − iE12 + iLS

�0�

�
Ḡ

2̄1�

�1�

− �1 ↔ 1�� . �108�

The zeroth-order Liouvillian is given by the initial condition
LS

�0�= �HS , . �− with Eq. �8� while the first-order Liouvillian is
further decomposed as

LS
�1��E,	� = LS

�1� − �E + i	�Z�1�, �109�

where LS
�1� and Z�1� do not depend on the Laplace variable.

The second-order Liouvillian was calculated in Ref. 38;
however, we will not need it for the solution of Eqs. �96� and
�97� in the regime ��c.

Let us now turn to the calculation of Eqs. �104� and �105�.
The zeroth-order term of the kernel is just given by the initial
condition �67�, i.e.,

�B
�,�0� 
 B��0� = i�B, . ��. �110�

For the derivation of an RG equation for �B
�,�1� we have to

keep all terms �J2 /� on the right-hand side of Eq. �97�.
Taking the zero-temperature limit and keeping only the order
J0 in the resolvents we obtain
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d

d�
�B
�,�1� = �

0

�

d	2Ḡ12
�1� 1

�12 + i� + i� + i	2 − LS
�0�

�B��0� 1

�12 + i�� + i� + i	2 − LS
�0�Ḡ2̄1̄

�1�
. �111�

We evaluate this integral by assuming

�LS
�0�,B��0��− = �B��0�, �112�

which has to be checked for the specific model at hand. In
the Kondo model we will find �=�h0 for B=S� and �=0
for B=Sz �see Sec. VI below�. Equation �112� can be used to
shift B��0� to the right and evaluate the remaining integral by
a partial fraction expansion

d

d�
�B
�,�1� =

i

� − � − � + i�� − ���
Ḡ12

�1��K���12 + i� − LS
�0��B��0�

− B��0�K���12 + i�� − LS
�0���Ḡ

2̄1̄

�1�
, �113�

where we have defined

K��z� = ln
2� − iz

� − iz
. �114�

The leading term in Eq. �113� is extracted by treating the
terms �z /� separately,

K��z� = K̃��z� +
iz

2�
, �115�

where K̃��z� can be integrated by K̃��z�= d
d� F̃��z� with

F̃��z� = � ln
2� − iz

� − iz
−

iz

2
�ln
��2� − iz�
2�� − iz�2 + 1� , �116�

which has the asymptotic behavior F̃��z�=��ln 2
+O�z2 /�2�� as �→�. Using Eqs. �115� in �113� we obtain
the frequency independent result

d

d�
�B
�,�1� = −

1

2�
Ḡ12

�1�B��0�Ḡ
2̄1̄

�1�
. �117�

The initial condition is given by Eq. �78�, i.e., ��B
�,�1���=�0

=0. As mentioned above we identify this with the vertex in
first order, B��1�
�B

�,�1�.
Using the result for B��1� we derive in Appendix B vertex

�104�, which is given by

B�,11�
�2� ��,�,�,��;	1,	2� = −

i

� − � − �̃ + i�� − ���
�Ḡ12

�1� ln
� + 	1 − i��12 + i� − LS

�0��
�

B��0�Ḡ
2̄1�

�1�
− �1 ↔ 1��

− Ḡ12
�1�B��0� ln

� + 	1 − i��12 + i�� − LS
�0��

�
Ḡ

2̄1�

�1�
+ �1 ↔ 1��� , �118�

where �̃=�+O�J� �see Sec. VI below�. We note that B�,11�
�2�

�J2 /�. For large � and using the result Eq. �118� we can derive
the RG equation for the kernel in second order �see Appendix C�

d

d�
�B
�,�2���,�,�,��� =

i

� − � − � + i�� − ���
d

d�
Ḡ12

�1��F̃�� ��12 + i� − LS
�0��B��0� − B��0�F̃�� ��12 + i�� − LS

�0���Ḡ
2̄1̄

�1�

−
i

2�
�Ḡ12

�2a1�B��0�Ḡ
2̄1̄

�1�
+ Ḡ12

�1�B��0�Ḡ
2̄1̄

�2a1�� −
1

2�
Ḡ12

�1�B��1�Ḡ
2̄1̄

�1�
+

1

2�
Ḡ12

�1��Z�1�,B��0��+Ḡ
2̄1̄

�1�
, �119�

where F̃�� �z�= F̃��z�− i z
2 ln 2. The initial condition is given

by Eq. �78�. At this point it turns out to be useful to decom-
pose the second-order kernel as

�B
�,�2���,�,�,��� = �B

�,�2a���,�,�,��� + �B
�,�2b� + �B

�,�2c�.

�120�

Here �B
�,�2a��� ,� ,� ,��� is given by

�B
�,�2a���,�,�,���

=
i

� − � − � + i�� − ���
Ḡ12

�1��F̃�� ��12 + i� − LS
�0��B��0�

− B��0�F̃�� ��12 + i�� − LS
�0���Ḡ

2̄1̄

�1�
, �121�

which satisfies the initial condition

�B
�,�2a����,�,�,�����=�0

=
ln 2

2
Ḡ12B��0�Ḡ2̄1̄ . �122�

The remaining terms in Eq. �120� satisfy

d

d�
�B
�,�2b� = −

i

2�
�Ḡ12

�2a1�B��0�Ḡ
2̄1̄

�1�
+ Ḡ12

�1�B��0�Ḡ
2̄1̄

�2a1�� ,

�123�

d

d�
�B
�,�2c� = −

1

2�
Ḡ12

�1�B��1�Ḡ
2̄1̄

�1�
+

1

2�
Ḡ12

�1��Z�1�,B��0��+Ḡ
2̄1̄

�1�
,

�124�

with initial condition �according to Eqs. �78� and �122��
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��B
�,�2b���=�0

+ ��B
�,�2c���=�0

= −
�2

32
Ḡ12B��0�Ḡ2̄1̄ −

ln 2

2
Ḡ12B��0�Ḡ2̄1̄ + i

�

4
Ḡ12B��0�G̃2̄1̄ .

�125�

The RG equations in the regime ��c derived in this sec-
tion for a model describing spin/orbital fluctuations will be
specialized and solved for the isotropic Kondo model in Sec.
VI A below. In the next section we will first study the effect
of the RG flow in the regime 0����c.

D. Weak-coupling analysis below �c

As explained in Ref. 38 the RG above �c has resummed
all leading and subleading logarithmic contributions in ln D

�c

into the renormalized vertices. At �=�c, the bare coupling
constant is replaced by a renormalized one Jc, all logarithmic
contributions are eliminated, and a simple power series in Jc
remains. Thus the RG equations can be solved perturbatively
provided Jc�1. In addition, the Liouvillian in the resolvents
is replaced by the full effective Liouvillian LS

ef f�z�.
When calculating diagrams containing resolvent �71� an

obvious problem is that the frequency dependence of the
effective Liouvillian LS

ef f�z� is not known explicitly. To cir-
cumnavigate this complication we use the following approxi-
mation for the resolvents:

	
i

1

z − �i�z�
Pi�z� � 	

i

ai

z − zi
Pi�zi� . �126�

Here the poles zi of the resolvent follow from the self-
consistency equation

zi = �i�zi� . �127�

The residue satisfy38 ai=1+O�J� and hence can be set to one
in the following.

Starting with the one-loop RG equation �100� for the ver-

tex Ḡ we observe that the terms on the right-hand side are
already of O�Jc

2�. Therefore, the renormalization of the

leading-order vertex Ḡ�1� stops at �=�c and we have to use

its value Ḡ�1�c�Jc in all calculations from now on. Note that
we indicate the use of the coupling constant at �c by the
additional superscript c. Furthermore, as we are eventually
interested in the kernel �B

� up to O�Jc
2� we deduce that the

higher-order vertices Ḡ�2a1� and Ḡ�2b� will not be needed be-
low �c.

Using the replacement Ḡ�1�→ Ḡ�1�c�Jc in Eq. �97� we ob-
tain up to O�Jc

2�

�B
���,�,�,��� = �B

�,�0� + �B
�,�1�c + �B

�,�2���,�,�,��� ,

�128�

where we have already used that the flow of the kernel in
order J also stops at �c. The second-order kernel satisfies

d

d�
�B
�,�2���,�,�,��� = �

0

�

d	2Ḡ12
�1�c���12,� + � + 	2�

�B��0����12,�� + � + 	2�Ḡ
2̄1̄

�1�c

= i	
i,j

K���12+ i�− zi�−K���12+ i��− zj�
� − � − �zi − zj� + i�� − ���

�Ḡ12
�1�cPi�zi�B��0�Pj�zj�Ḡ2̄1̄

�1�c
, �129�

where we have used approximation �126� and only kept
terms �Jc

2. The initial condition is given by the solution at
�=�c. Using decomposition �120� we obtain

�B
�,�2���,�,�,��� = �B

�,�2a���,�,�,��� + �B
�,�2b�c + �B

�,�2c�c,

�130�

where the flow of �B
�,�2a� below �c is governed by Eq. �129�.

The initial value at �=�c is given by Eq. �121�, which we
can rewrite as

�B
�,�2a����,�,�,�����=�c

=
i

� − � − � + i�� − ���	i,j �F̃�c
� ��12 + i� − zi�

− F̃�c
� ��12 + i�� − zj��Ḡ12

�1�cPi�zi�B��0�Pj�zj�Ḡ2̄1̄

�1�c
.

�131�

In doing so we have assumed

LS
�0� = 	

i

ziPi�zi� + O�Jc� , �132�

1 = 	
i

Pi�zi� + O�Jc� , �133�

and neglected terms of order Jc
3. We will show in Appendix E

that these assumptions are fulfilled for the Kondo model in a
magnetic field. We will further show that �=zi−zj +O�Jc� for
all pairs �i , j� for which the last line in Eq. �131� is nonzero.
When applying the results of this section to other models of
spin/orbital fluctuations one has to ensure the validity of the
assumptions made above. The initial value problem Eq.
�129� with Eq. �131� is readily solved using K��z�
= d

d�F��z� with

F��z� = F̃��z� +
iz

2
�ln

i�

2z
+ 1� . �134�

The result for the kernel at �=0 is then obtained using
F�=0�z�=−i z

2 ln 2,

DIRK SCHURICHT AND HERBERT SCHOELLER PHYSICAL REVIEW B 80, 075120 �2009�

075120-14



�B
�,�2a����,�,�,�����=0 =

1

2	
i,j

1

� − � − �zi − zj� + i�� − ���
Ḡ12

�1�cPi�zi�B��0�Pj�zj�Ḡ2̄1̄

�1�c���12 + i� − zi��ln
i�c

�12 + i� − zi
+ 1�

− ��12 + i�� − zj��ln
i�c

�12 + i�� − zj
+ 1�� . �135�

Together with �B
�,�2b�c and �B

�,�2c�c determined in the RG
procedure above �c this yields the final result for the kernel
in second order in Jc. It is applicable to any operator B which
does not couple the dot and reservoir degrees of freedom,
i.e., whose initial value satisfies n=0 in Eq. �36�. Further-
more the calculations were done for a generic model describ-
ing spin or orbital fluctuations as the initial vertex G was
assumed to have two external legs. The only assumptions we
have made regarding the model specifics are the commuta-
tion relations �112� and �B4�, Eqs. �132� and �133�, as well as
the specific relation between the parameter � and the poles zi
and zj, which have to be determined from the self-
consistency equation �127�.

In the next section we will apply the results derived above
to the spin-spin correlation functions in the isotropic Kondo
model. In particular, we will show that the assumptions dis-
cussed above are justified in this model. Finally we note that
similar results for the effective Liouvillian have been derived
in Refs. 1 and 38.

VI. EXPLICIT RG EQUATIONS FOR THE KONDO
MODEL

In this section we will specialize the generic results de-
rived above to the case of the spin-spin correlation functions
in the isotropic, antiferromagnetic Kondo model in a mag-
netic field. The Hamiltonian was presented in Sec. II; in par-
ticular, the dot Hamiltonian and the coupling to the leads as
given in Eqs. �8� and �9�.

A. RG flow above �c

The first step is to represent the initial vertex and Hamil-
tonian in Liouville space,

G11�
pp =

1

2��J���
i �0Lpi����

i
for � = − �� = +

− �J���
i �0Lpi����

i
for � = − �� = − ,

�
�136�

LS
�0� = �HS, . �− = h0�L+z + L−z� = h0Lh, �137�

where the spin superoperators L� p= �Lpx ,Lpy ,Lpz� are defined
by their action on an arbitrary operator A on the dot Hilbert
space via

L� +A = S�A, L� −A = − AS� . �138�

An explicit matrix representation for the superoperators L� p is
given in Appendix D, where also further superoperators are
defined.

The leading-order vertex Ḡ�1� was derived in Refs. 1 and
38. It can be parametrized for �=−��=+ as

Ḡ11�
�1� = − J���L�

2 · �� ���, �139�

where �� is the vector formed by the Pauli matrices. The
vertex for �=−��=− is obtained using the antisymmetry

Ḡ11�=−Ḡ1�1. Inserting Eq. �139� into the RG equation �101�
and using the antisymmetry Ḡ12

�1�=−Ḡ21
�1�, Eqs. �D13�–�D15�,

and J��=J�� we obtain

d

d�
J��� = −

1

�
J��J���. �140�

If we assume form �10�, i.e., J���=2�x�x��J̄ with 	�x�=1,
we obtain the usual poor-man scaling equation

d

d�
J̄��� = −

2

�
J̄���2, J̄��0� = J̄0, �141�

with the solution

J̄��� =
1

2 ln
�

TK

, TK = �0e−1/2J̄0. �142�

Equation �140� explicitly shows that the term �J2 /� on the
right-hand side contributes to the renormalization in order J.
Similarly, the renormalization of a quantity in order Jn is
determined by the terms �Jn /� as well as �Jn+1 /�. In con-
trast, a term �Jn+1�� /��k /� with k�1 does not contribute
at order Jn, as can be seen from

�� d��
�k

��k

J̄n+1

��
= −
�k

k
�� d��� d

d��

1

��k�J̄n+1

= −
�k

�k

J̄n+1

k
− 2

n + 1

k
�� d��

�k

��k

J̄n+2

�
.

�143�

The vertex G̃11�
�1� is given by

G̃11�
�1� =

1

2
J����L�

1 + L� 3� · �� ���. �144�

Beside the leading-order vertex �139� and the zero-order
Liouvillian �137� we also need explicit expressions for the

vertex Ḡ�2a1� as well as the Liouvillian in first order. These
are given by1,38
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Ḡ11�
�2a1� =

�

2
J��J���L�

3 · �� ���, �145�

LS
�1� =

1

2
tr J h0Lh, �146�

Z�1� = tr J La, �147�

where J= �J���� is the coupling of the leading-order vertex

Ḡ�1� and the trace tr is taken in the reservoir indices, tr J
=JRR+JLL. Furthermore we have taken the scaling limit J0
→0, �0�D→� such that the Kondo temperature TK re-
mains constant.

As the next step it is straightforward to derive the follow-
ing results for the initial vertex B��0�:

B+
�0� = i�Ls

1 + iLs
3� , �148�

B−
�0� = − 2iLs

2, �149�

where s takes the values s=z ,� for B=Sz ,S� and we have
set Lz

j 
Ljz, j=1,2 ,3. We stress that in this way the spin
operators are directly represented by their matrices in Liou-
ville space. Hence, we do not have to use a pseudo-fermion
representation of the Kondo spin. The vertex A defined in
Eq. �66� is just given by A= 1

2B+
�0�. Furthermore, we recall

that the kernels in zeroth order are just given by �A���=A
and �B

��� ,��=B��0�, respectively. Now the RG equation �117�
for �B

�,�1� reads

d

d�
�B
�,�1� = �0 for �B

+,�1�

−
1

2�
tr J2 B−

�0� for �B
−,�1�, � �150�

where we have used Eqs. �D13� and �D16�. The additional
factor of 2 is due to the implicit summation over �. Hence
the solution in the scaling limit is given by

�B
+,�1� = B+

�1� = 0, �151�

�B
−,�1� = B−

�1� =
1

2
tr J B−

�0� = − i tr J Ls
2. �152�

In second order we will here determine only the terms �B
�,�2b�

and �B
�,�2c� as their flow is cut off at �=�c. The remaining

term �B
�,�2a� will be derived in the next section. Hence we

have to solve the RG equation �123�, which using Eqs. �D17�
and �D18�, reads

d

d�
�B
�,�2b� = �

�

�
tr J3�Ls

2 for �B
+,�2b�

Ls
3 for �B

−,�2b�.
� �153�

Analogously we obtain for Eq. �124� using Eqs. �147�,
�D16�, and �D19�

d

d�
�B
�,�2c� = − i

3

2�
tr J2 tr J�0 for �B

+,�2c�

Ls
2 for �B

−,�2c�.
� �154�

The solutions read

�B
+,�2b� = −

�

2
tr J2 Ls

2, �155�

�B
−,�2b� =

�

2
tr J2 Ls

3, �156�

�B
+,�2c� = 0, �157�

�B
−,�2c� = i

3

4
tr J2 Ls

2, �158�

where we have already taken the scaling limit so that the
contributions from the initial condition are negligible.

B. RG flow below �c

As we have already explained above the RG flow of the

leading order solution Ḡ�1� stops at the scale �c which is
given by the maximal one of the external parameters,

�c = max����,V,h0� . �159�

The value of the vertex at �c is given by Eq. �139� with

Jc = J��c� 
 � JR Jnd

Jnd JL
� , �160�

where due to Eq. �10� the couplings satisfy

JR = 2xRJ̄c, JL = 2xLJ̄c, Jnd = �JRJL, �161�

with xR+xL=1 and

J̄c =
1

2 ln
�c

TK

. �162�

The asymmetry ratio is defined as r=JL /JR. As already men-
tioned the flow of all vertices right to B� does not stop at �c
as defined in Eq. �159� but rather at max�V ,h0�. This affects
the result for the kernel �B

� only in the regime ��V ,h0. We
will discuss the changes in this case separately at the end of
this section. We stress, however, that the flow of all vertices

Ḡ needed for the derivation of the stationary reduced density
matrix �S

st is cut off by max�V ,h0�. Hence in order to stay in
the weak-coupling regime we need

max�V,h0� � TK ↔ Jc � 1. �163�

As the definition of the scale �c is to some extent arbitrary as
long as it remains of the order of the external energy scales
in the problem, it is necessary to study the effect of a redefi-
nition �c→�c� with �c� /�c�1. This will induce a redefini-
tion of the coupling as

J̄c� =
1

2 ln
�c�

TK

= J̄c − 2J̄c
2 ln

�c�

�c
+ O�Jc

3� . �164�

As we will show below, the redefinition �c→�c� does not
change the final results for the Liouvillian or the kernel �B

�

up to order Jc
2.

DIRK SCHURICHT AND HERBERT SCHOELLER PHYSICAL REVIEW B 80, 075120 �2009�

075120-16



The Liouvillian up to O�Jc
2� can be parametrized as38

LS�E,	� = h�E,	�Lh − i�a�E,	�La − i�c�E,	�Lc

− i�3z�E,	�L3z. �165�

The Liouvillian can be diagonalized �see Eq. �70�� using the
eigenvalues �z=E+ i	�

�0�E,	� = 0, �166�

�1�E,	� = − i�a�E,	� , �167�

���E,	� = � h�E,	� − i�a�E,	� − i�c�E,	� , �168�

and the projectors

P0�E,	� = Lb −
�3z�E,	�
�a�E,	�

L3z, �169�

P1�E,	� = La − Lc +
�3z�E,	�
�a�E,	�

L3z, �170�

P� =
1

2
�Lc� Lh� . �171�

Eigenvalues �166�–�168� can now be used to determine the
poles zi of the resolvent defined in Eq. �127�. Solving
the self-consistency equation one finds z0=0, z1=−i�̃1

=−i�a�0,0�, and z�=� h̃− i�̃2, where the spin relaxation and
dephasing rates and the renormalized magnetic field are
given up to O�Jc

2� by

�̃1 = �JR
2 + JL

2�Im H2�h̃�

+ JRJL„Im H2�V + h̃� + Im H2�V − h̃�… , �172�

�̃2 =
JR

2 + JL
2

2
Im H1�h̃� +

JRJL

2
„2Im H1�V� + Im H2�V + h̃�

+ Im H2�V − h̃�… , �173�

h̃ = �1 −
JR + JL

2
+

�JR + JL�2

2
�h0 −

JR
2 + JL

2

2
Re H2�h̃�

−
JRJL

2
„Re H2�V + h̃� − Re H2�V − h̃�… . �174�

The higher order terms �Jc
3 ln¯ for the rates were obtained

in Ref. 38. The voltage was defined in Eq. �11� and we al-
ways assume V ,h00. As these rates are obtained from the

Liouvillian at z=0 and z=� h̃, respectively, the external fre-
quency � does not appear as a cutoff in the definition of �c.
Furthermore, we have defined the auxiliary functions

Hi�E� = E�ln
�c

�E2 + �̃i
2

+ 1� + iE arctan
E

�̃i

, �175�

which arises from terms like

�z − zj��ln
i�c

z − zj
+ 1� �176�

by neglecting the imaginary part of zj, which is proportional

to �̃1/2�Jc
2, in the prefactor and taking the real and imaginary

parts. We note that as z�=� h̃− i�̃2 the renormalized mag-
netic field automatically appears in the logarithm. We have

therefore also kept h̃ in the linear prefactor. The deviation of

Im Hi�E� from �
2 �E� is only important for �E���̃i and will be

neglected otherwise. Furthermore, we have omitted the
imaginary part of the Laplace variable, 	, since for the cor-
relation functions calculated below we only need the Liou-
villian on the real axis. For 	=0 and using Eq. �175�, the
functions in parametrization �165� are given up to order Jc

2

by38

h�E� = �1 +
JR + JL

2
−

3

8
�JR + JL�2�h0 +

JR
2 + JL

2

4
„H2�E + h̃�

− H2�E − h̃�… +
JRJL

4
„H2�E + V + h̃� + H2�E − V + h̃�

− H2�E + V − h̃� − H2�E − V − h̃�… , �177�

�a�E� = − i�JR + JL��1 −
JR + JL

2
�E − i

JR
2 + JL

2

2
„H2�E + h̃�

+ H2�E − h̃�… − i
JRJL

2
„H2�E + V + h̃�

+ H2�E − V + h̃� + H2�E + V − h̃� + H2�E − V − h̃�… ,

�178�

�c�E� = − i
JR

2 + JL
2

2
�H1�E� −

1

2
H2�E + h̃� −

1

2
H2�E − h̃��

− i
JRJL

2
�H1�E + V� + H1�E − V� −

1

2
H2�E + V + h̃�

−
1

2
H2�E − V + h̃� −

1

2
H2�E + V − h̃�

−
1

2
H2�E − V − h̃�� , �179�

�3z�E� =
�

2
�JR + JL�2h0 =

�

2
�JR + JL�2h̃ . �180�

In the last line we have replaced the bare magnetic field by
the renormalized field, such that the latter appears consis-
tently in all functions �Eqs. �177�–�180��. The change is of
O�Jc

3�. We further note that a redefinition �c→�c� yields the
same result for the Liouvillian with the replacement Jc→Jc�.
Naively, the linear terms in h�E� and �a�E� yield additional
contributions in order Jc�

2. These are, however, exactly can-
celed by terms appearing from the logarithms using Hi�E�
=Hi��E�−E ln ��c� /�c�, where Hi��E� is given by Eq. �175�
with �c→�c�. The facts presented above allow us to justify
assumptions �132� and �133� made in Sec. V D above for the
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specific case of the Kondo model �see Appendix E�.
After the recall of the Liouvillian in second order we will

finally evaluate the kernel �B
� in the Kondo model. The flow

of the kernel also stops at �c except for one term, namely
�B
�,�2a�. Hence we find

�B
���,�,�,��� = �B

�,�0� + �B
�,�1�c + �B

�,�2a���,�,�,���

+ �B
�,�2b�c + �B

�,�2c�c, �181�

where the first term is given by Eq. �148� or �149� depending
on the operator studied, and the second, fourth, and fifth is
obtained from Eqs. �151� and �152�, as well as �155�–�158�
using the replacement J→Jc. For the evaluation of the re-

maining contribution ��B
�,�2a���=0 from Eq. �13� let us first

consider the operator B=Sz. Using

	
k=x,y,z

L2kPi�zi�B+
�0�Pj�zj�L2k � Lc �182�

for j=1 and i=0,1 �in all other cases the left–hand side
vanishes� we find

�Sz
+,�2a���,�,�,��� � Lc. �183�

We note that in Eq. �182� the zero eigenvalue of the effective
Liouvillian appears in the resolvent left to B+

�0�. As we will
show in the next section the resulting term �183� does not
contribute to the correlation functions. For the evaluation of
the kernel for the calculation of the susceptibility we use

	
k=x,y,z

L2kPi�zi�B−
�0�Pj�zj�L2k = �� i

4
�La −

1

2
�Lc Lh�� if i, j = �

0 otherwise,
� �184�

which results in

�Sz
−,�2a����,�,�,�����=0 = −

i

2

JR
2 + JL

2

� − � + i�� − ���
�„H2�� + h̃� − H2�� − h̃� − H2�� + h̃� + H2�� − h̃�…�La −

1

2
Lc� −

1

2
„H2�� + h̃�

+ H2�� − h̃� − H2�� + h̃� − H2�� − h̃�…Lh� −
i

2

JRJL

� − � + i�� − ���
�„H2�� + V + h̃� + H2�� − V + h̃�

− H2�� + V − h̃� − H2�� − V − h̃� − H2�� + V + h̃� − H2�� − V + h̃� + H2�� + V − h̃� + H2�� − V − h̃�…

��La −
1

2
Lc� −

1

2
„H2�� + V + h̃� + H2�� − V + h̃� + H2�� + V − h̃� + H2�� − V − h̃� − H2�� + V + h̃�

− H2�� − V + h̃� − H2�� + V − h̃� − H2�� − V − h̃�…Lh� . �185�

Next we consider the case B=S� and start with the evaluation of the kernel �S�
+,�2a� from Eq. �135� by using

	
k=x,y,z

L2kPi�zi�B+
�0�Pj�zj�L2k =��

i

4

�3z�z0�
�a�z0�

L�
5 if i = 0, j = −

 
i

4

�3z�z1�
�a�z1�

L�
5 if i = 1, j = −

0 otherwise.
� �186�

Hence the double sum in Eq. �135� reduces to a sum over i=0,1, where the two terms have opposite signs and otherwise equal

each other up to the appearance of the rate �̃1 in the second term. As can be easily shown this sum vanishes in second order,
i.e.,

�S�
+,�2a���,�,�,��� = O�Jc

3� . �187�

Similarly, the kernel �S�
−,�2a� is evaluated using

	
k=x,y,z

L2kPi�zi�B−
�0�Pj�zj�L2k =�−

i

4
L�

5 if i = 0, j =  

−
i

4
L�

4 if i = � , j = 1

0 otherwise,
� �188�

which results in
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�S�
−,�2a����,�,�,�����=0 = −

i

2

JR
2 + JL

2

� − � − h̃ + i�� − ���
�„H1��� − H2�� + h̃�…L�

5 + „H2�� − h̃� − H1���…L�
4 �

−
i

2

JRJL

� − � − h̃ + i�� − ���
�„H1�� + V� + H1�� − V� − H2�� + V + h̃� − H2�� − V + h̃�…L�

5

+ „H2�� + V − h̃� + H2�� − V − h̃� − H1�� + V� − H1�� − V�…L�
4 � . �189�

A redefinition �c→�c� yields the same result for the kernels
�B
� with the replacement Jc→Jc� as can be easily shown in

the same way as for the Liouvillian.
Finally, let us consider the kernel in first order in the

regime ��V ,h0. Starting from Eq. �113� we obtain using
K��z�= i� /z+ ¯ ��z����

d

d�
�B
�,�1� =� 1

�

1

2�
Ḡ12

�1��
�c

B��0���12 + i�� − LS
�0��Ḡ

2̄1̄

�1�
+ O� �

�2� .

�190�

Here the second vertex still depends on �. When integrating
this from max�V ,h0� to �c= ��� we obtain a contribution
�1 /�. Hence we deduce

�B
�,�1�c − ��B

�,�1��max�V,h0� �
1

�
for �� V,h0. �191�

A similar analysis shows that the difference between
��B
�,�2��max�V,h0� and �B

�,�2�c is at least �1 /�.

VII. LONGITUDINAL SPIN-SPIN CORRELATION
FUNCTIONS

In this section we will use the results for the Liouvillian
and the kernel to calculate the correlation functions �23� and
�24�. We first calculate the auxiliary correlation functions
�29� using �64�. We start with parametrization �165� of the
Liouvillian, which implies form �71� for the resolvent in
CAB
� ���. We further deduce from the previous section that the

kernels �Sz
��� , i0+ � admit the parametrizations

�Sz
+ ��,i0 + � = iL1z + iL3z + hSz

+ ���Lh + �Sz
+c���Lc,

�192�

�Sz
− ��,i0 + � = hSz

− ���Lh + �Sz
−,3z���L3z + �Sz

−,a���La

+ �Sz
−,c���Lc, �193�

where, for example, �Sz
−,3z���= �

2 tr Jc
2= �

2 �JR+JL�2. We stress
that in contrast to the parametrization of the Liouvillian we
have not introduced additional factors of i here. The station-
ary reduced density matrix has the form

�S
st = ��↑↑ 0

0 �↓↓
� , �194�

with �↑↑+�↓↓=1.

A. Longitudinal correlation functions without magnetic field

The stationary reduced density matrix can be determined
using Eq. �22�. Without magnetic field one simply finds �↑↑
=�↓↓=1 /2. Furthermore, rates �172� and �173� are given by

�̃1 = �̃2 = �JRJLV . �195�

We now rewrite the resolvent using projectors �71� and use

TrS��Sz���Pi����Sz
+ ��,i0 + ��S

st� = −
1

2
�i1, �196�

TrS��Sz���Pi����Sz
− ��,i0 + ��S

st� = i
�

4
�JR + JL�2�i1,

�197�

where we have applied Eq. �68� as well as Eq. �66�. We note,
in particular, that the term �Sz

+c���Lc does not contribute to
Eq. �196�. This yields with Eq. �64� and �1���=−i�a���,

CSzSz
+ ��� =

i

2

� − Im �a��� − i Re �a���
�� − Im �a����2 + Re �a���2 , �198�

CSzSz
− ��� = − i

�

2
�JR + JL�2CSzSz

+ ��� . �199�

Since

�Im �a���� ��Jc �� , �200�

we can neglect Im �a��� in Eq. �198�. On the other hand, the
real part of �a in the denominator has to be kept as it be-
comes large compared to � in the small-frequency limit.
Hence we arrive at

SSzSz��� =
1

2

Re �a���
�2 + Re �a���2 , �201�

�SzSz��� =
�

4
�JR + JL�2 Re �a��� + i�

�2 + Re �a���2 . �202�

We note that the leading term of the susceptibility is of order
Jc

2. The correlation functions are plotted in Figs. 8–10. We
observe very good agreement with the results obtained by
Fritsch and Kehrein using the flow-equation method.29,28

Let us further study the behavior of the correlation func-
tions analytically. For small values of the frequency SSzSz���
has the Lorentzian form
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SSzSz��� =
1

2

�̃1

�2 + �̃1
2

——→
�→0 1

2�̃1

=
1

2�JRJLV
, �203�

where we have used Re �a�0�= �̃1. This result for the small-
frequency regime agrees with conclusions drawn from a
mapping of the spin correlators to the one-particle Green’s
function of Majorana fermions.20,21 On the other hand, in the
limit of large frequencies we find

SSzSz��� =
�

4

�JR + JL�2

�
�

1

�

1

ln2�

TK

, �204�

in agreement with the flow-equation method.28,29 We note
that the J�s appearing in the correlation function �201� have
their origin in the resolvent 1 / ��−LS

ef f����; hence the exter-
nal frequency � serves as a cutoff parameter in �c. This
results in the logarithmic corrections at large frequencies.

The susceptibility in the limiting regimes reads

�SzSz� ��� =
�1 + r�2

4�rJRJLV2�, �→ 0, �205�

�SzSz� ��� = SSzSz���, �→ � . �206�

The first result shows a dependence of the gradient at small
� on the asymmetry ratio r=JL /JR, while the second result
indicates the revival of the fluctuation-dissipation theorem
�35� for ��V. We note that the derivation of Eq. �206�
relies on the fact that the coupling constants Jc appearing in
the kernel �Sz

− are cut off by the external frequency �, as it
was discussed at the end of Sec. VI. Furthermore, the sus-

ceptibility �SzSz� ��� has a maximum at �� �̃1, where it takes
the value

�SzSz� ��� �̃1� �
�1 + r�2

8rV
. �207�

This behavior was also deduced using the flow-equation
method.28

In order to investigate the revival of the fluctuation-
dissipation theorem we introduce the longitudinal fluctua-
tion-dissipation ratio20,21,61

fL��� =
�SzSz� ���

SSzSz���
, �208�

which is in equilibrium simply given by fL���=tanh �

2T
→sgn��� �T→0�. Using our results �201� and �202� we ob-
tain

fL��� =
�

2

�JR + JL�2

Re �a���
� , �209�

which is plotted in Fig. 11. We find fL��V�=1, i.e., the
equilibrium result, whereas for small frequencies we get

fL��� V� =
�1 + r�2

2r

�

V
, �210�

in agreement with Refs. 20 and 21. We note that fL���V�
increases with increasing asymmetry r as the coupling of the
voltage to the dot becomes less effective.
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FIG. 10. �Color online� Imaginary part of the longitudinal sus-
ceptibility �SzSz� ��� for V=100TK and various values of the asym-
metry ratio r=JL /JR.
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FIG. 11. �Color online� Longitudinal fluctuation-dissipation ra-
tio fL��� for various values of the asymmetry r and applied voltage
V. In order to get a smooth behavior at ��V we have kept the
arctan in the definition of Hi in this region. The dotted line is a
guide to the eye.
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FIG. 8. �Color online� Longitudinal correlation function SL���

SSzSz��� in the symmetric Kondo model �r=1� for various values
of the applied voltage V.
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FIG. 9. �Color online� Imaginary part of the longitudinal sus-
ceptibility �L����
�SzSz� ��� in the symmetric Kondo model �r=1�
for various values of the applied voltage V.
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B. Longitudinal correlation functions in a weak

magnetic field (V h̃)

In the presence of an external magnetic field the station-
ary reduced density matrix is given by �↑↑=1+M, �↓↓=1
−M, �↑↓=�↓↑=0, with the magnetization in leading order38

�see also Refs. 18, 19, 22, and 24�

M = −
1

2

�3z�0�
�a�0�

= −
1

2

�1 + r�2h̃

�1 + r2�h̃ + 2rV
. �211�

To evaluate the correlation function we now use

TrS��Sz���Pi����Sz
+ ��,i0 + ��S

st�

=�M
�3z���
�a���

, i = 0

−
1

2
− M

�3z���
�a���

, i = 1

0, i = � ,
� �212�

where the term �Sz
+c���Lc again does not contribute. From

this a straightforward calculation using Eq. �200� yields the
correlation function up to O�Jc

2�

SSzSz��� =
1

2

Re �a��� + 2M�3z���
�2 + Re �a���2 , �213�

where the zero-frequency � peak does not appear because of
our definition �23�. The suppression of the correlation func-
tion by the finite magnetic field is shown in Fig. 12, which
agrees very well with similar plots obtained using the flow-
equation method.30 In the zero-frequency limit we find

SSzSz��→ 0� =
4r2

�JRJL

�1 + r + r2�h̃ + rV

��1 + r2�h̃ + 2rV�3
�V − h̃� ,

�214�

while the leading term �1 /� in the large frequency regime
is given by Eq. �204� �including the logarithmic corrections
in the coupling constants�. Furthermore we observe a weak

feature at �=V− h̃ which has for �̃2�V− h̃� h̃ the line
shape

SSzSz��� �
�JRJL

8�2 ��2 + r + 2r2 + 4M�1 + r�2�
h̃

r
+ 3V +�

+
2

�
�� − V + h̃�arctan

� − V + h̃

�̃2

� . �215�

Similar features appear at �= h̃ ,V+ h̃.
For the calculation of the susceptibility we need

TrS��Sz���Pi����Sz
− ��,i0 + ��S

st�

= � i

2
�Sz

−,3z��� + iM�Sz
−,a�����i1, �216�

which directly yields

�SzSz� ��� =
1

�2 + Re �a���2�− M� Im �Sz
−,a���

+ ��
4

�JR + JL�2 + M Re �Sz
−,a����Re �a���� ,

�217�

�SzSz� ��� = ��
4

�JR + JL�2 + M Re �Sz
−,a���� �

�2 + Re �a���2 .

�218�

In Eq. �217� we have kept the terms in the second line, which
are of O�Jc

4�, as due to � Im �Sz
−,a���→0��→0� they be-

come dominant in the small-frequency limit. For larger fre-
quencies these terms have to be neglected. Thus the static
susceptibility �32� is given in leading order by

�SzSz = −
r�1 + r�2V

��1 + r2�h̃ + 2rV�2
, �219�

in agreement with the literature.18,19,22,24,38 For larger fre-
quencies the real part of the susceptibility possesses logarith-

mic features at �= h̃ ,V� h̃ due to the term Im�Sz
−,a���. For

example,

�SzSz� ��� h̃� � − M�JR + JL�2� − h̃

2�2 ln
�c

��� − h̃�2 + �̃2
2

+ ¯ ,

�220�

where the terms represented by the dots do not contain any

logarithmic features at �= h̃. The imaginary part of the sus-
ceptibility is plotted in Fig. 13. It has a finite gradient at �
=0 given by

�SzSz� ��→ 0� =
2

�

r2�1 + r�2V

��1 + r2�h̃ + 2rV�3

�

JRJL
, �221�

as well as a maximum at �� �̃1, where it takes the value

0 5 10 15 20 25 30
Ω/T

K

0

0.002

0.004

0.006

0.008
S L

(Ω
)x

T K
h

0
=100 T

K
h

0
=105 T

K
h

0
=110 T

K
h

0
=115 T

K

FIG. 12. �Color online� Longitudinal correlation function
SSzSz��� in the symmetric Kondo model �r=1� for V=100TK and
various values of the applied magnetic field h0. For h0=115TK we

already have V� h̃, which implies SSzSz��� h̃−V�=0 in order Jc
2

�see Sec. VII C�.
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�SzSz� ��� �̃1� �
r

2

�1 + r�2V

��1 + r2�h̃ + 2rV�2
= −

1

2
�SzSz.

�222�

In the large-frequency limit �SzSz� ���V , h̃� coincides with
the correlation function �204�. Furthermore, the imaginary

part of the susceptibility has features at �= h̃ ,V� h̃ which
have their origin in the function Im H2 contained in
Re �Sz

−,a��� and hence have a line shape similar to Eq. �215�.
The fluctuation-dissipation ratio fL��� defined in Eq.

�208� reads in the presence of a magnetic field

fL��� =

�

2
�JR + JL�2� + 2M Re �Sz

−,a����

Re �a��� + ��JR + JL�2Mh̃
, �223�

which is plotted in Fig. 14. Larger values of the magnetic
field push the system closer to its equilibrium behavior, as

only those lead electrons in the energy interval V− h̃ can
couple to the dot and thus induce the nonequilibrium behav-
ior. We note, however, that the equilibrium result fL���=1 is

only reached for �V+ h̃. Furthermore, increasing the
asymmetry r drives the system towards the equilibrium situ-
ation as the coupling of the voltage to the dot becomes less
effective. This effect is suppressed by increasing the mag-

netic field as overall less electrons couple to the dot. For
small frequencies we obtain

fL��→ 0� =
1

2

�1 + r�2V

�1 + r + r2�h̃ + rV

�

V − h̃
. �224�

C. Longitudinal correlation functions in a strong

magnetic field (V� h̃)

In the case of a strong magnetic field, V� h̃, the correla-
tion functions up to quadratic order in the coupling are still
given by Eqs. �213�, �217�, and �218�, respectively, where the
magnetization is simply M =−1 /2. One can easily show us-
ing Im H2���= �

2 ��� that �SzSz� ��0�=SSzSz��0�, which
implies the equilibrium result fL��0�=1. Furthermore, the
correlation function vanishes identically in order Jc

2 for �

� h̃−V. Physically the Kondo spin is in its ground state �↓ �
and the energy difference to the state �↑ � due to the external

magnetic field is given by h̃. Hence one has to apply at least

the frequency h̃−V to obtain any response from the spin,
where the energy V is provided by the applied voltage.

This has to be contrasted with the result for the suscepti-
bility in the equilibrium Kondo model derived by Garst et
al.62 They used a relation between the inelastic electron scat-
tering and the correlation function to show that the suscepti-
bility in equilibrium has the small-frequency behavior

�SzSz� ����Jc
4�, i.e., it is nonzero for �� h̃. This linear be-

havior was also observed by Costi and Kieffer63 as well as
Hewson64 using a numerical renormalization group calcula-
tion. In analogy, we expect the nonequilibrium correlation

functions to be nonzero for �� h̃−V in higher order in Jc.
The consistent calculation of terms �Jc

4 in the real-time RG
procedure applied here would involve, however, five-loop
diagrams and is hence beyond the scope of this work.

The correlation function in the regime V� h̃ is plotted in
Fig. 15. We find excellent agreement with numerical results
recently obtained by Fritsch and Kehrein using the flow-
equation method.30 In particular, we observe a splitting of the

sharp edge at �= h̃ due to the applied voltage, which leads to
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characteristic features at �= h̃ , h̃�V. Using our result �213�
we can derive analytic expressions for the line shape close to

these frequencies. For example, at �� h̃ we find

�SzSz� ��� �
�JRJLV

4�2 +
�

8
�JR + JL�2� − h̃

�2

+
1

4
�JR

2 + JL
2�
� − h̃

�2 arctan
� − h̃

�̃2

. �225�

The first term shows that the gradient of �SzSz� ��� will be-

come negative for �� h̃ if the applied voltage is large

enough, i.e., V h̃ /2. In the vicinity of �= h̃�V the corre-
lation function shows similar kinklike behavior �225�. The
physical origin of these kinks lies in the fact that at each of

the energies �= h̃ , h̃�V a new process sets in, which in-

volves a spinflip on the dot costing the Zeeman energy h̃ as
well as the virtual hopping of an electron on and off the dot
gaining or costing the energy −V, 0, or V, respectively. The
real part �SzSz� ��� of the susceptibility shows logarithmic fea-

tures �220� at �= h̃ , h̃�V as is shown in Fig. 16. We stress

that the splitting of the sharp edge at �= h̃ is a true nonequi-
librium effect.

VIII. TRANSVERSE CORRELATION FUNCTIONS

Finally let us discuss the transverse correlation functions
in the presence of a magnetic field. We note that by virtue of
Eq. �34� we can restrict ourselves to the S−S+ correlations.
The corresponding kernels up to second order in Jc were
calculated in Eqs. �148�, �149�, �151�, �152�, and �155�–
�158�, as well as �189�. We will first discuss the susceptibility
and present the results for the correlation function afterward.

In order to derive the susceptibility we start with the pa-
rametrization

�S+
− ��,i0 + � = �S+

−,2L+
2 + �S+

−,3L+
3 + �S+

−,5���L+
5 , �226�

where, for example, �S+
−,2=−2i− i tr Jc+ i 3

4 tr Jc
2=−2i− i�JR

+JL�+ i 3
4 �JR+JL�2. Note that we already indicated that the

explicit frequency dependence in order Jc
2 appears in �S+

−,5

exclusively. �There is of course an implicit frequency depen-

dence of �S+
−,2 and �S+

−,3 through Jc.� Now using

TrS��S−���Pi����S+
− ��,i0 + ��S

st�

= i��S+
−,3 + ��S+

−,2 + 2�S+
−,5����M��i+ �227�

we obtain

�S−S+��� = i
�S+

−,3 + ��S+
−,2 + 2�S+

−,5����M

� − h��� + i�2���
, �228�

where we have introduced the short-hand notation �2���
=�a���+�c���. For h0=0 we find �S−S+���=2�SzSz���. The
transverse susceptibility has a peak at the solution of

� − Re h��� − Im �2��� = 0, �229�

which is up to first order solved by

� = �1 −
1

2
�JR + JL��h0 = h̃ . �230�

In a finite magnetic field the spin on the dot will be in its
ground state |↓�. The energy difference to the excited state |↑�
is given by h̃, leading to an enhanced response of the system
at this frequency. At the peak the imaginary part of the sus-
ceptibility takes the value

�S−S+� ��� h̃� � −
2M

�̃2

, �231�

as is shown in Figs. 17 and 18. The peak is suppressed by
increasing the voltage since this reduces the probability for
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the Kondo spin to be in its ground state. On the other hand,
for a fixed value of the voltage the peak increases with in-
creasing asymmetry ratio as the coupling of the voltage to
the dot becomes less effective. The width of the peak is up to
order Jc

2 given by

Re�2�h̃� − Im h�h̃� = �̃2, �232�

with the limiting cases

V � h̃:
�

4
�JR + JL�2h0, �233�

h̃ � V: �JRJLV . �234�

In the equilibrium limit, V=0, this corresponds to the result
obtained in Ref. 65. The real part of the transverse suscepti-
bility possesses logarithmic features similar to Eq. �220� at

�= h̃ , h̃�V.
Using a pseudofermion representation of the Kondo spin

together with nonequilibrium perturbation theory Paaske et
al.23 previously obtained the transverse susceptibility. In or-
der to compare these results to Eq. �228� we first make the

approximations h���→h0 and �2���→ �̃2. In the limit h0

→0 we then obtain using �S+
−,3= �

2 �JR+JL�2

�S−S+��� � i
�

2

�JR + JL�2

� + i�̃2

. �235�

In the regime h0� �̃2 we have M =O�Jc
0�, thus we can ne-

glect �S+
−,3 as well as �S+

−,5 in the numerator in Eq. �228�,
which results in

�S−S+��� �
2M

� − h0 + i�̃2

. �236�

These approximations agree with the results obtained in Ref.
23 �we have to replace h0→−B due to a different sign in the
definition of the bare dot Hamiltonian HS�. Furthermore, in
the regime � ,h0�V we can use

�S+
−,3 + ��S+

−,2 + 2�S+
−,5����M → − 2

M

h0
�̃2 − 2iM , �237�

where we have replaced Im Hi���→ �
2 ��� in the real part of

�S+
−,5, to obtain

�S−S+��� �
2M

h0

h0 − i�̃2

� − h0 + i�̃2

. �238�

This confirms a conjecture by Paaske et al.23 We would like
to stress, however, that our result �228� goes beyond approxi-
mation �238�.

In analogy to the susceptibility one finds for the correla-
tion function

SS−S+���

=

Re �2��� − Im h��� −
�

2
M�JR + JL�2�� − h0�

�� − Re h��� − Im �2����2 + �Re �2��� − Im h����2 ,

�239�

where we have neglected all terms of order Jc
3 in the numera-

tor. This allows the calculation of the transverse fluctuation-
dissipation ratio

fT��� =
�S−S+� ���

SS−S+���
, �240�

which is plotted in Fig. 19. For negative frequencies �
�−V the fluctuation-dissipation ratio takes the value fT���
=−1, whereas for frequencies �V we find fT���=1, thus
recovering the equilibrium situation in these limits. As for
the longitudinal fluctuation-dissipation ration we observe
that increasing the magnetic field or the asymmetry ratio r
drives the system toward the equilibrium situation.

IX. CONCLUSIONS

In this paper we have generalized the real-time renormal-
ization group method in frequency space to allow the calcu-
lation of dynamical correlation functions of arbitrary dot op-
erators in systems describing spin and/or orbital fluctuations.
We applied this to the two-lead Kondo model in a magnetic
field, where we calculated the longitudinal and transverse
spin-spin correlation and response functions up to second
order in the exchange coupling. We wish to stress that within
this formalism the Kondo spin is directly represented by ma-
trices in Liouville space; hence there is no need to apply a
pseudofermion representation. Specifically, we derived the
two-loop RG equations for the dot operators and solved them
analytically up to order Jc

2 in the weak-coupling regime. Here
Jc denotes the effective coupling at the energy scale �c
=max�V ,h0� which has to satisfy �c�TK. Our results show
several features attributed to the nonequilibrium situation,

e.g., the splitting of the edge at �= h̃ of the longitudinal
correlation function in a strong magnetic field or the suppres-
sion of the peak in the transverse susceptibility by a finite
applied voltage. Furthermore, we find very good agreement
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with results for the longitudinal correlation function recently
obtained by Fritsch and Kehrein using the flow-equation
method.29,30 A particular advantage of our approach is the
possibility to obtain analytic expressions for all correlation
functions in the weak coupling limit.

We have calculated the spin-spin correlation functions for
the nonequilibrium Kondo model in the weak coupling re-
gime �c�TK. The regime of strong coupling, �c�TK, is
still an open problem. In this case, the exchange couplings Jc
become of order O�1� and a controlled truncation of the RG
equations is no longer possible. Within the present RTRG-FS
method it was shown in Ref. 1 that the relaxation/dephasing
rates saturate to the Kondo temperature in the strong cou-
pling regime. As an effect the coupling constants do not di-
verge as in poor-man scaling methods but remain finite.
However, the numerical solution of the RG equations in low-
est order showed an instability against an exponentially
small change in the initial condition for the relaxation/
dephasing rates. Although it was possible to find excellent
agreement for the temperature dependence of the linear con-
ductance with NRG calculations, it was necessary to fine
tune the initial condition for the rates. Therefore, up to now,
it is not yet clear whether a controlled solution of the strong
coupling regime is possible by using RTRG-FS.

The nonequilibrium Kondo model describes the spin fluc-
tuation �or Coulomb blockade� regime of the more general
nonequilibrium Anderson impurity model �for a systematic
derivation of the Kondo model from the Anderson model
using a Schrieffer-Wolff transformation, see, e.g., Ref. 37�.
In this model the single-particle spectral function is of most
interest, which has recently been studied within NRG in a
scattering wave basis.39,40 The present RTRG-FS method can
also be applied to this model but, as explained in detail in
Ref. 1, in the charge fluctuation regime it is not yet clear
whether a well-defined weak-coupling regime exists at zero
temperature. At resonance �i.e., when the renormalized
single-particle level is identical to one of the chemical po-
tentials of the leads� there is no energy scale except the
broadening of the level itself and the expansion parameter is
of order O�1�. Nevertheless the results obtained in Ref. 34
�using a previous version of the real-time RG method� after
an a priori uncontrolled truncation of the RG equations were
in excellent agreement with the Bethe ansatz solution5 for the
equilibrium occupation of the local level. These and related
topics are of high interest and will be the subject of forth-
coming research.
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APPENDIX A: DERIVATION OF EQS. (30) AND (31)

Obviously the time-dependent correlation function can be
written as

SAB�t� =
1

2
�A�t�H,B�0�H�+�st − A�stB�st. �A1�

Now, applying the time-translational invariance

A�t1�HB�t2�H�st = A�t1 + t�HB�t2 + t�H�st �A2�

for all t, t1, and t2 fixed and finite as well as the relation

�A�0�H,B�t�H���
st
* = �A�t�H,B�0�H���st, �A3�

which can be verified by a straightforward calculation using
B=A†, we obtain Eq. �30�. In the same way Eq. �A2� can be
used to derive the relation �AB���= iCAB

− ���.

APPENDIX B: DERIVATION OF B±,11�
(2)

In this appendix we will calculate the vertex B�,11�
�2� . Start-

ing from Eq. �96� we first take the zero-temperature limit.
Furthermore, we can expand the resolvents up to O�J� as38

��E,	� =
1

E + i	 − LS
�0� − LS

�1� − �E + i	�Z�1�

= �1 −
Z�1�

2
� 1

E + i	 − LS
�0� − L̃S

�1�
�1 −

Z�1�

2
� ,

�B1�

with

L̃S
�1� = LS

�1� −
1

2
�Z�1�,LS

�0��+. �B2�

Using this we obtain together with the expansion B�=B��0�

+B��1� in Eq. �96�,

d

d�
B�,11���,�,�,��;	1,	1�� = iḠ12�1 −

Z�1�

2
� 1

�12 + i� + i� + i	1 − LS
�0� − L̃S

�1�
�B��0� + B��1� −

1

2
�Z�1�,B��0��+�

�
1

�12 + i�� + i� + i	1 − LS
�0� − L̃S

�1�
�1 −

Z�1�

2
�Ḡ2̄1� − �1 ↔ 1�� , �B3�

where we have omitted the arguments of the vertices Ḡ for simplicity. Using
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�LS
�0� + L̃S

�1�,B��0��− = �̃B��0�, �LS
�0� + L̃S

�1�,B��1��− = �̃B��1�, †LS
�0� + L̃S

�1�,�Z�1�,B��0��+‡− = �̃�Z�1�,B��0��+, �B4�

with �̃=�h0 
h0

2 tr J for B=S� and �̃=0 for B=Sz �see Sec. VI� we obtain after a partial fraction expansion

d

d�
B�,11���,�,�,��;	1,	1�� = −

i

� − � − �̃ + i�� − ���
Ḡ12�1 −

Z�1�

2
��B��0� + B��1� −

1

2
�Z�1�,B��0��+�

�� 1

�12 − �̃ + i� + i� + i	1 − LS
�0� − L̃S

�1�
−

1

�12 + i�� + i� + i	1 − LS
�0� − L̃S

�1���1 −
Z�1�

2
�Ḡ2̄1�

+ �1 ↔ 1�� . �B5�

We see that no terms �1 /� can occur on the right-hand side and, hence, in order to determine the RG equation for B�,11�
�2� we

have to replace the vertices Ḡ by the leading order ones Ḡ�1� and omit all terms containing B��1�, Z�1�, and L̃S
�1�. This yields using

�̃=�+O�J� as well as 1 /�− iz=1 /�+d /d� ln �− iz /�

d

d�
B�,11�

�2� ��,�,�,��;	1,	1�� = −
1

� − � − � + i�� − ���
Ḡ12

�1��� d

d�
ln
� + 	1 − i��12 + i� − LS

�0��
�

�B��0�

− B��0�� d

d�
ln
� + 	1 − i��12 + i�� − LS

�0��
�

��Ḡ
2̄1�

�1�
+ �1 ↔ 1�� . �B6�

Using the RG equation for the leading-order vertex �101� we
can integrate Eq. �B6� up to higher-order corrections and
obtain solution �118�, which in particular satisfies the initial
condition

B�,11�
�2� ���,�,�,��;	1,	1����=�0

= 0 �B7�

as given by Eq. �79� from the discrete RG step.
The two-loop diagrams for the vertex B�,11� are shown in

Fig. 20. As each diagram contains three vertices Ḡ�J and
we are interested in the vertex up to second order, we have to
extract the terms �1 /�. This is done by expanding the re-
solvents in lowest order

��E23,	 + � + 	3� � −
i

� + 	3
, �B8�

��E12,	 + � + 	1� � −
i

�
, �B9�

��E11�23,	 + � + 	1 + 	1� + 	3� � −
i

� + 	3
, �B10�

where E�	� stands for either ���� or �����, respectively. Us-
ing this we immediately see that the first two diagrams are
proportional to

�
0

� d	3

�� + 	3�3 �
1

�2 , �B11�

the fourth and fifth to

1

�
�

0

� d	3

�� + 	3�2 �
1

�2 , �B12�

and the third and sixth to

1

�2�
0

� d	3

� + 	3
�

1

�2 . �B13�

Thus the two-loop diagrams behave as �J3 /�2 and hence do
not contribute to the renormalization of the second-order ver-
tex B�,11�

�2� .
Finally we have to study the one-loop diagrams which

contain B�,11� itself. These diagrams are shown in Fig. 21.
As we can easily see from Eq. �118�, the leading-order result
for B�,11� behaves for large � as

3 1 2 1’3

1 2 3 3 21’

2 3 1’ 3 21 2 3 1 1’ 3 2

1 2 1’ 3 3 2

2 3 3 1 2 1’2 B±B±

B± B±

B±B±

FIG. 20. �Color online� Two-loop diagrams for B�,11�.
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B�,11�
�2� ��,�,�,��;	1,	2� �

1

�
Ḡ2 �

J2

�
. �B14�

Now the one-loop diagrams contain an additional vertex Ḡ as
well as a resolvent ��1 /�. Hence we deduce that the dia-

grams yield terms proportional to J3 /�2 which do not con-
tribute to the renormalization of the second-order vertex
B�,11�

�2� .

APPENDIX C: DERIVATION OF �B
±,(2)

In this appendix we will derive the RG equation �119� for
the second-order kernel �B

�,�2��� ,� ,� ,���. For this we have
to evaluate all terms on the right-hand side of Eq. �97�. We

start with the first line. Using Eq. �B1� and expanding Ḡ in
powers of J yields

�
0

�

d	2Ḡ12
�1��1 −

Z�1�

2
� 1

�12 + i� + i� + i	2 − LS
�0� − L̃S

�1�
�B��0� + B��1� −

1

2
�Z�1�,B��0��+�

�
1

�12 + i�� + i� + i	2 − LS
�0� − L̃S

�1�
�1 −

Z�1�

2
�Ḡ

2̄1̄

�1� �C1�

+ �
0

�

d	2�iḠ12
�2a1� + Ḡ12

�2b���,�;�,	2��
1

�12 + i� + i� + i	2 − LS
�0�B�

�0� 1

�12 + i�� + i� + i	2 − LS
�0�Ḡ2̄1̄

�1� �C2�

+ �
0

�

d	2Ḡ12
�1� 1

�12 + i� + i� + i	2 − LS
�0�B�

�0� 1

�12 + i�� + i� + i	2 − LS
�0� �iḠ2̄1̄

�2a1�
+ Ḡ

2̄1̄

�2b���12,�� + � + 	2;− 	2,− ��� , �C3�

where we have already neglected the terms Z�1� and L̃S
�1� in the second and third line as they lead only to higher-order

corrections. Using the commutators �B4� the first line �C1� can be treated similarly to �B
�,�1� derived in Sec. V C. In the term

�B��0� we only keep the term containing K̃��z� �the term �1 /� was already used to calculate �B
�,�1��, while in the other two

terms we have to extract the term �1 /�. Thus we arrive at

i

� − � − �̃ + i�� − ���
Ḡ12

�1��K̃���12 + i� − LS
�0��B��0� − B��0�K̃���12 + i�� − LS

�0���Ḡ
2̄1̄

�1�
−

1

2�
Ḡ12

�1�B��1�Ḡ
2̄1̄

�1�
+

1

2�
Ḡ12

�1��Z�1�,B��0��+Ḡ
2̄1̄

�1�
.

�C4�

Using the same steps for the terms containing Ḡ�2a1� in Eqs.
�C2� and �C3� one finds

−
i

2�
�Ḡ12

�2a1�B��0�Ḡ
2̄1̄

�1�
+ Ḡ12

�1�B��0�Ḡ
2̄1̄

�2a1�� . �C5�

For the terms of Eqs. �C2� and �C3� containing Ḡ�2b� we use
Eq. �108� in the form

Ḡ12
�2b���,�;�,	2� = Ḡ13

�1� ln
2� − i��13 + i� − LS

�0��
�

Ḡ
3̄2

�1�

− Ḡ23
�1� ln

� + 	2 − i��23 + i� − LS
�0��

�
Ḡ

3̄1

�1�
,

�C6�

Ḡ
2̄1̄

�2b���12,�� + � + 	2;− 	2,− ��

= Ḡ
2̄3

�1�
ln

2� − i��13 + i�� − LS
�0��

�
Ḡ

3̄1̄

�1�

− Ḡ
1̄3

�1�
ln
� + 	2 − i��23 + i�� − LS

�0��
�

Ḡ
3̄2̄

�1�
. �C7�

When inserted into Eqs. �C2� and �C3� the first terms do not
depend on the integration variable 	2. The remaining inte-
gral can be done as usual by a partial fraction expansion.
This yields ��=�h0 for B=S� and �=0 for B=Sz�

1 1’2 21 2 2 1’
B±,12 B±,2̄1�

FIG. 21. �Color online� One-loop RG diagrams for B�,11� which
contain B�,11� itself.
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i

� − � − � + i�� − ���
Ḡ13

�1� ln
2� − i��13 + i� − LS

�0��
�

Ḡ
3̄2

�1�

��K���12 + i� − LS
�0��B��0� − B��0�K���12 + i�� − LS

�0���Ḡ
2̄1̄

�1�

+
i

� − � − � + i�� − ���
Ḡ12

�1��K���12 + i� − LS
�0��B��0�

− B��0�K���12 + i�� − LS
�0���

�Ḡ
2̄3

�1�
ln

2� − i��13 + i�� − LS
�0��

�
Ḡ

3̄1̄

�1�
.

If we now expand K� and the logarithm for large �,
K��z�=ln 2+ iz /2� and ln 2�− iz /�=ln 2− iz /2�, and keep
only the terms proportional to J3 /� we arrive at

−
ln 2

2�
Ḡ12

�1��Ḡ
2̄3

�1�B��0� + B��0�Ḡ
2̄3

�1��Ḡ
3̄1̄

�1�
. �C8�

In contrast, the second terms of Eqs. �C6� and �C7� do de-
pend on the integration variable 	2. The evaluations is, how-
ever, straightforward. We use a partial fraction expansion for
the resolvents left and right to the vertex B��0� as well as

ln
� + 	2 − iz

�
= ln

� + 	2

�
−

iz

� + 	2
. �C9�

This leads to integrals of the form

�
0

�

d	2
1

z + i� + i	2
ln
� + 	2

�
�

1 − ln 2

2�
z , �C10�

�
0

�

d	2
1

z + i� + i	2

1

� + 	2
� −

i

2�
, �C11�

where we are only interested in the �1 /� terms. Now using

the asymmetry Ḡ12
�1�=−Ḡ21

�1� we find

−
1 − ln 2

2�
Ḡ12

�1��Ḡ
2̄3

�1�B��0� + B��0�Ḡ
2̄3

�1��Ḡ
3̄1̄

�1� �C12�

which has to be combined with Eq. �C8� for the full result

from the terms containing Ḡ�2b�.
The second and third line of Eq. �97� containing the ver-

tex B�,11�
�2� can be treated using the same steps as were used to

evaluate the Ḡ�2b�-dependent parts of Eqs. �C2� and �C3�.
The result reads after some tedious but straightforward alge-
bra

1 + ln 2

2�
Ḡ12

�1��Ḡ
2̄3

�1�B��0� + B��0�Ḡ
2̄3

�1��Ḡ
3̄1̄

�1�
. �C13�

Finally, to extract the leading term �J3 /� of the fourth
line of Eq. �97� one can simply replace the resolvents
��z ,z�+�+	i� by 1 / ��+	i�. This yields

ln 2

2�
Ḡ12

�1��Ḡ
2̄3

�1�B��0� + B��0�Ḡ
2̄3

�1��Ḡ
3̄1̄

�1�
. �C14�

Hence, the result for the RG equation of the kernel
�B
�,�2��� ,� ,� ,��� is obtained by summing Eqs. �C4�, �C5�,

�C8�, and �C12�–�C14� using K̃��z�=d /d�F̃��z� with Eq.
�116� in Eq. �C4� as well as

2

�
Ḡ12

�1��Ḡ
2̄3

�1�B��0� + B��0�Ḡ
2̄3

�1��Ḡ
3̄1̄

�1�
=

d

d�
Ḡ12

�1�B��0�Ḡ
2̄1̄

�1�
.

�C15�

This yields Eq. �119�.

APPENDIX D: ALGEBRA IN LIOUVILLE SPACE

Consider an operator A acting on the dot Hilbert space
having matrix elements Aab with respect to the basis
��↑ � , �↓ ��. If K denotes the superoperator acting on dot op-
erators via O . = �A , . �� then for an arbitrary dot operator B
we have

�OB�ab = Oab,cdBcd, Oab,cd = Aac�bd� �acAdb. �D1�

Furthermore, we represent superoperators in the matrix rep-
resentation

O = �Oab,cd� =�
O↑↑,↑↑ O↑↑,↓↓ O↑↑,↑↓ O↑↑,↓↑

O↓↓,↑↑ O↓↓,↓↓ O↓↓,↑↓ O↓↓,↓↑

O↑↓,↑↑ O↑↓,↓↓ O↑↓,↑↓ O↑↓,↓↑

O↓↑,↑↑ O↓↑,↓↓ O↓↑,↑↓ O↓↑,↓↑
� .

�D2�

If O= PQ is the product of two superoperators, then
Oab,cd= Pab,efQef ,cd and matrix �D2� of O is simply given by
the matrix product of the matrices of P and Q.

A basis for the operators in the Liouville space of the
Kondo dot can be built up by the spin superoperators L� + and
L� − defined in Eq. �138�. An explicit representation in basis
�D2� is provided by

L+x =�
0 0 0

1

2

0 0
1

2
0

0
1

2
0 0

1

2
0 0 0

� ,

L+y =�
0 0 0 −

i

2

0 0
i

2
0

0 −
i

2
0 0

i

2
0 0 0

� ,
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L+z =�
1

2
0 0 0

0 −
1

2
0 0

0 0
1

2
0

0 0 0 −
1

2

� ,

L−x =�
0 0 −

1

2
0

0 0 0 −
1

2

−
1

2
0 0 0

0 −
1

2
0 0

� ,

L−y =�
0 0 −

i

2
0

0 0 0
i

2

i

2
0 0 0

0 −
i

2
0 0

� ,

L−z =�
−

1

2
0 0 0

0
1

2
0 0

0 0
1

2
0

0 0 0 −
1

2

� .

Furthermore we define the operators

La =
3

4
1 + L� + · L� −, �D3�

Lb =
1

4
1 − L� + · L� −, �D4�

Lc =
1

2
1 + 2L+zL−z, �D5�

Lh = L+z + L−z, �D6�

L� 1 =
1

2
�L� + − L� −� − iL� +� L� −, �D7�

L� 2 = −
1

2
�L� + + L� −� , �D8�

L� 3 =
1

2
�L� + − L� −� + iL� +� L� −, �D9�

as well as

L�
a = Lax� iLay, a = + ,− ,1,2,3, �D10�

L�
4 = L�

2 � �L�
+ L−z + L+zL�

− � , �D11�

L�
5 = L�

2  �L�
+ L−z + L+zL�

− � . �D12�

We note that Lh=−2L2z as well as L�
4 +L�

5 =2L�
2 .

In the spin sector we will use frequently

��1�3

a ��3�2

a = ��3�2

a ��1�3

a = ��1�2
�no sum over a�

�D13�

as well as

��1�3

a ��3�2

b = − ��3�2

a ��1�3

b = i	
c

!abc��1�2

c �for a � b� .

�D14�

The Liouville operators satisfy �the sums are over i , j
=x ,y ,z while the index p takes the values p=��

i	
i,j
!ijkL

2iL2j =
1

2
L2k, �D15�

	
i

L2iBp
�0�L2i = �p−

1

4
B−

�0�, �D16�

	
i

L2iBp
�0�L3i = �p−iL3z, �D17�

	
i

L3iBp
�0�L2i = �p+

i

2
Lh, �D18�

	
i

L2i�Z�1�,Bp
�0��+L2i = �p−

i

2
tr J Lh. �D19�

APPENDIX E: PROOF OF EQS. (132) AND (133) FOR
THE ISOTROPIC KONDO MODEL

The results for the Liouvillian presented in Sec. VI B al-
low us to obtain

LS
�0� = h0Lh = h0�P+ − P−� = 	

i=0,1,�
ziPi�zi� + O�Jc� , �E1�

where we have used z0=0, z1=O�Jc
2�, and z�=�h0+O�Jc�.

Furthermore, we can expand the zero-eigenvalue projector as
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P0�z1� = P0�0� − i��3z�0�
�a�0�

d

dz
�a�z��

z=0
L3z + ¯

= P0�z0� + O�Jc� , �E2�

where d /dz�a�z��z=0=−i�JR+JL�+¯. This directly yields Eq.
�133�. To prove the final statement, �=zi−zj +O�Jc� for all
pairs �i , j� for which

Ḡ12
�1�cPi�zi�B��0�Pj�zj�Ḡ2̄1̄

�1�c �E3�

is nonvanishing, we note that for B=Sz these pairs are given
by �see Eqs. �182� and �184�� �i , j�= �0,1� , �1,1� for B+

�0� and
�i , j�= �� ,� � for B−

�0�, respectively. On the other hand, we
have �=0 in both cases, which implies zi−zj =�+O�Jc

2� for
B=Sz. The same analysis can be performed for B=S� where
the relevant pairs are given by �i , j�= �0, � , �1, � for B+

�0�

and �i , j�= �1, � , �� ,1� for B−
�0�.
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